首页> 外文期刊>Journal of Ship Production >Engineering and Production Technology for Lightweight Ship Structures, Part Ⅱ: Distortion Mitigation Technique and Implementation
【24h】

Engineering and Production Technology for Lightweight Ship Structures, Part Ⅱ: Distortion Mitigation Technique and Implementation

机译:轻型船舶结构的工程与生产技术,第二部分:减轻畸变的技术与实现

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Shipboard applications of lightweight structures have increased over recent years in both military and commercial vessels. Thin steel reduces topside weight, enhances mission capability, and improves performance and vessel stability, but the propensity of buckling distortion has increased significantly. At present, several US Navy construction programs are experiencing high rates of buckling distortion on thin steel structures. The standard shipyard practice of fabricating stiffened steel panels by arc welding is one of the major contributors to this distortion. Correcting the distortion is a necessary but time-consuming operation that adds no value and ultimately tends to degrade the quality of the ship structure. With a major initiative funded by the US Navy, Northrop Grumman Ship Systems (NGSS) has undertaken a comprehensive assessment of lightweight structure fabrication technology since 2002. Through collaborative research, significant progress has been achieved in the development of distortion-control techniques. Reverse arching, transient thermal tensioning (TTT), stiffener assembly sequencing, and other preferred manufacturing techniques were developed at NGSS to reduce distortion and eliminate the high rework costs associated with correcting that distortion. Complex lightweight panel structures, which are reinforced by long slender stiffeners along with numerous cutouts and inserts, pose a major challenge for distortion control. The geometric complexity yields a more complicated buckling behavior, which drives the need to develop a more fine-tuned finite element model to determine critical parameters and heating patterns for the TTT process. NGSS has recently teamed with Edison Welding Institute (EWI), Battelle Memorial Institute, and the University of New Orleans on a Navy project to further refine TTT procedures for complex lightweight ship structures. In this paper, functional requirements and the design of TTT process and production equipment are discussed. The refined TTT process will be benchmarked by the test panel observations, and a laser scanning device, LIDAR, will be used to analyze panel distortion topography.
机译:近年来,轻型结构在船上的应用在军事和商业船只中都有所增加。薄钢减轻了顶部重量,增强了任务能力,并改善了性能和船只稳定性,但是屈曲变形的可能性大大增加了。目前,美国海军的几个建造计划都在薄型钢结构上经受高屈曲变形。电弧焊制造加劲钢板的标准船厂做法是造成这种变形的主要因素之一。校正变形是必要的但费时的操作,它不会增加任何价值,并最终会降低船结构的质量。自2002年以来,在美国海军资助的一项重大计划下,诺斯罗普·格鲁曼公司的船舶系统(NGSS)对轻型结构制造技术进行了全面评估。通过合作研究,畸变控制技术的开发取得了重大进展。 NGSS开发了反向拱形,瞬态热张紧(TTT),加劲肋组装顺序以及其他优选的制造技术,以减少变形并消除与校正变形有关的高返工成本。复杂的轻型面板结构由细长的加劲肋以及大量切口和嵌件加固,这对变形控制提出了重大挑战。几何复杂性产生了更复杂的屈曲行为,这驱使开发更精细的有限元模型以确定TTT工艺的关键参数和加热方式的需求。 NGSS最近与爱迪生焊接学院(EWI),巴特尔纪念学院和新奥尔良大学合作开展了一项海军项目,以进一步完善复杂轻型船舶结构的TTT程序。本文讨论了TTT工艺和生产设备的功能要求以及设计。改进的TTT工艺将通过测试面板的观察进行基准测试,并且将使用激光扫描设备LIDAR来分析面板变形的形貌。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号