...
首页> 外文期刊>Journal of Seismic Exploration >APPLICATION OF EFFICIENT FREQUENCY-DOMAIN FULL WAVEFORM INVERSION USING TIME-DOMAIN ENCODED SIMULTANEOUS SOURCES
【24h】

APPLICATION OF EFFICIENT FREQUENCY-DOMAIN FULL WAVEFORM INVERSION USING TIME-DOMAIN ENCODED SIMULTANEOUS SOURCES

机译:时域编码同时源在高效频域全波形反演中的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Full waveform inversion (FWI) is used to determine accurate subsurface velocities through recursive calculation. FWI needs extensive computation; therefore, reducing the computational cost while inverting for an acceptable result is important for the practical application of FWI. Frequency-domain FWI has the advantages of selection of certain frequency components and reduced computational time because of the use of a matrix solver, which solves many sources simultaneously through one matrix factorization. However, the size of the matrix increases exponentially with the size of the computational domain and the number of parameters. The efficiency of frequency-domain FWI decreases in 3D FWI because of limited computational memory. To enhance the efficiency of frequency-domain FWI, time-domain modeling with a simultaneous source was exploited in this study. Although the time-domain modeling scheme is one of the most efficient methods for performing 3D frequency-domain FWI, it still requires time-marching for every source. However, the efficiency can be greatly improved by using the simultaneous source method. Moreover, this method is not limited by the amount of memory required because the time-domain modeling scheme is a matrix-free method. To suppress the crosstalk noise in the simultaneous source method, we use random phase (RP) encoding, random time delay (RTD), and the partial-source assembling method. The nonlinear conjugate gradient method (NLCG) is also used to accelerate the convergence speed. To validate the efficiency of the proposed algorithm, a numerical test is conducted using the 2D SEG/EAGE overthrust model and shows that determining the appropriate balance between the computational cost and the quality of the result can improve the efficiency of the encoded simultaneous source FWI (ESSFWI). The 3D numerical test also verified that the proposed algorithm enhances the computational efficiency and guarantees the quality of the inverted result.
机译:全波形反演(FWI)用于通过递归计算确定准确的地下速度。 FWI需要大量计算;因此,降低计算成本同时求取可接受的结果对于FWI的实际应用很重要。频域FWI的优点是选择了某些频率分量,并减少了计算时间,这是因为使用了矩阵求解器,该矩阵求解器通过一个矩阵分解同时求解许多源。但是,矩阵的大小随计算域的大小和参数的数量呈指数增长。由于有限的计算内存,频域FWI的效率在3D FWI中降低。为了提高频域FWI的效率,在本研究中利用了同时源的时域建模。尽管时域建模方案是执行3D频域FWI的最有效方法之一,但它仍然需要对每个源进行时间行进。但是,通过使用同时源方法可以大大提高效率。此外,由于时域建模方案是无矩阵方法,因此该方法不受所需存储量的限制。为了抑制同时源方法中的串扰噪声,我们使用随机相位(RP)编码,随机时间延迟(RTD)和部分源组合方法。非线性共轭梯度法(NLCG)也可用于加快收敛速度​​。为了验证所提出算法的效率,使用2D SEG / EAGE上推模型进行了数值测试,结果表明,确定计算成本和结果质量之间的适当平衡可以提高编码的同时源FWI的效率( ESSFWI)。 3D数值测试还验证了该算法提高了计算效率,保证了反演结果的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号