首页> 外文期刊>Journal of propulsion and power >Oxidation of Ethylene-Air Mixtures at Elevated Pressures, Part 2: Chemical Kinetics
【24h】

Oxidation of Ethylene-Air Mixtures at Elevated Pressures, Part 2: Chemical Kinetics

机译:高压下乙烯-空气混合物的氧化,第2部分:化学动力学

获取原文
获取原文并翻译 | 示例
           

摘要

A chemical kinetics submechanism for small molecular weight hydrocarbons was modified by adjusting rate constants to produce better agreement with recent ethylene ignition delay time data compared with an earlier version of the mechanism, for temperatures from 1003 to 1401 K, at pressures between 1.1 and 24.9 atm, and for equivalence ratios from 0.3 to 2.0. The unproved mechanism captures the pressure and equivalence ratio behavior seen in the data at these intermediate temperatures, such as the smaller-than-expected effect of equivalence ratio at the higher temperatures and an apparent lack of pressure dependence at fuel-lean conditions. By using detailed sensitivity analyses, the important reactions were identified, rectifying the model simulations in predicting the observed experimental behavior of the data in this study. In fact, when the model is used to extend the temperature range above 1400 K and below 1000 K, the same pressure dependence is actually seen for all equivalence ratios, just to a lesser extent at the test temperatures. Hence, the resulting hydrocarbon mechanism is much more robust as a result of this exercise. The initial deficiency and subsequent improvement of the model justify the new ignition delay time data from the companion paper to this study as well as the need for further study on ethylene kinetics.
机译:通过调节速率常数来修改小分子量碳氢化合物的化学动力学亚机理,以便与100℃至1401 K的温度,1.1至24.9 atm的压力相比,与早期机理的乙烯点火延迟时间数据更好地吻合。 ,并且当量比从0.3到2.0。未经验证的机制可捕获在这些中间温度下数据中看到的压力和当量比行为,例如在较高温度下当量比的效果小于预期,并且在稀燃条件下显然缺乏压力依赖性。通过使用详细的灵敏度分析,可以识别出重要的反应,从而纠正了模型模拟,从而预测了本研究中观察到的数据实验行为。实际上,当使用该模型将温度范围扩展到1400 K以上和1000 K以下时,实际上对于所有当量比都可以看到相同的压力依赖性,只是在测试温度下程度较小。因此,作为该练习的结果,所得的碳氢化合物机理更加坚固。该模型的最初缺陷和随后的改进证明了从伴随纸到本研究的新的点火延迟时间数据以及对乙烯动力学进行进一步研究的需要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号