首页> 外文期刊>Journal of propulsion and power >Numerical Simulation of Performance of High-Temperature Inert Gas Plasma Faraday-Type Magnetohydrodynamic Generator
【24h】

Numerical Simulation of Performance of High-Temperature Inert Gas Plasma Faraday-Type Magnetohydrodynamic Generator

机译:高温惰性气体等离子体法拉第型磁流体动力发生器性能的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Two-dimensional numerical simulations have been carried out with the objective of explaining the experimentally observed performance of a shock-tunnel-driven, high-temperature inert gas plasma Faraday-type magnetohydrodynamic generator with segmented electrodes. A maximum enthalpy extraction ratio of 13.1% is estimated for a load resistance of 1.0 Ω, which agrees well with the experimental result (12.9% for 1.0 Ω). Current concentration at the upstream edges of the anode and the downstream edges of the cathode, which is due to the Hall effect, is successfully simulated. A large voltage drop is caused in the vicinity of the electrodes, which is attributed to a large Hall parameter arising due to the decrease in the electron number density in the region of the boundary layer. The plasma structure is streaky and unstable at an inlet total temperature of 7500 K; the structure becomes stable with an increase of inlet total temperature to 9000 K. Suppression of ionization instability can be attributed in part to the weakness of the dependency of the electrical conductivity on the electron number density as coulomb collision of electrons become dominant at higher inlet total temperatures.
机译:进行了二维数值模拟,目的是解释在实验中观察到的具有分段电极的冲击隧道驱动的高温惰性气体等离子体法拉第型磁流体动力发生器的性能。负载电阻为1.0Ω时,最大焓提取率估计为13.1%,这与实验结果非常吻合(1.0Ω时为12.9%)。成功地模拟了由于霍尔效应而在阳极的上游边缘和阴极的下游边缘处的电流集中。在电极附近引起大的电压降,这归因于由于边界层区域中的电子数密度的降低而产生的大的霍尔参数。在入口总温度为7500 K时,等离子体结构呈条纹状且不稳定。随着入口总温度增加到9000 K,结构变得稳定。电离不稳定性的抑制可部分归因于电的电导率对电子数密度的依赖性的弱化,因为电子在更高的入口总库仑碰撞成为主导温度。

著录项

  • 来源
    《Journal of propulsion and power》 |2015年第5期|1362-1369|共8页
  • 作者

    M. Tanaka; T. Murakami; Y. Okuno;

  • 作者单位

    Tokyo Institute of Technology, Yokohama 226-8502, Japan;

    Tokyo Institute of Technology, Yokohama 226-8502, Japan;

    Tokyo Institute of Technology, Yokohama 226-8502, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号