...
首页> 外文期刊>Journal of power sources >Application of lattice Boltzmann method to a micro-scale flow simulation in the porous electrode of a PEM fuel cell
【24h】

Application of lattice Boltzmann method to a micro-scale flow simulation in the porous electrode of a PEM fuel cell

机译:格子玻尔兹曼方法在PEM燃料电池多孔电极微观流动模拟中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The electrode of a PEM fuel cell is a porous medium generally made of carbon cloth or paper. Such a porous electrode has been widely modeled as a homogeneous porous medium with a constant permeability in the literature of PEM fuel cell. In fact, most of gas diffusion media are not homogeneous having non-isotropic permeability. In case of carbon cloth, the porous structure consists of carbon fiber tows, the bundles of carbon fiber, and void spaces among tows. The combinational effect of the void space and tow permeability results in the effective permeability of the porous electrode. In this work, the lattice Boltzmann method is applied to the simulation of the flow in the electrode of a PEM fuel cell. The electrode is modeled as void space and porous region which has certain permeability and the Stokes and Brinkman equations are solved in the flow field using the lattice Boltzmann model. The effective permeability of the porous medium is calculated and compared to an analytical calculation showing a good agreement. It has been shown that the permeability of porous medium is strongly dependant on the fiber tow orientation in three-dimensional simulations. The lattice Boltzmann method is an efficient and effective numerical scheme to analyze the flow in a complicated geometry such as the porous medium.
机译:PEM燃料电池的电极是通常由碳布或纸制成的多孔介质。在PEM燃料电池的文献中,这种多孔电极已被广泛地建模为具有恒定渗透性的均质多孔介质。实际上,大多数气体扩散介质不是均质的,具有非各向同性的渗透性。对于碳布,多孔结构由碳纤维丝束,碳纤维束和丝束之间的空隙组成。空隙空间和丝束渗透率的组合作用导致多孔电极的有效渗透率。在这项工作中,将格子Boltzmann方法应用于模拟PEM燃料电池电极中的流动。将电极建模为具有一定渗透性的空隙空间和多孔区域,并使用晶格Boltzmann模型在流场中求解Stokes和Brinkman方程。计算出多孔介质的有效渗透率,并将其与显示出良好一致性的分析计算结果进行比较。已经表明,在三维模拟中,多孔介质的渗透性强烈取决于纤维束的取向。格子玻尔兹曼方法是一种有效而有效的数值方案,用于分析复杂几何形状(例如多孔介质)中的流动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号