...
首页> 外文期刊>Journal of power sources >Electrochemical impedance investigation of proton exchange membrane fuel cells experienced subzero temperature
【24h】

Electrochemical impedance investigation of proton exchange membrane fuel cells experienced subzero temperature

机译:质子交换膜燃料电池经历零度以下温度的电化学阻抗研究

获取原文
获取原文并翻译 | 示例

摘要

Polarization losses of the fuel cells with different residual water amount frozen at subzero temperature were investigated by electrochemical impedance spectroscopy (EIS) taking into account the ohmic resistance, charge transfer process, and oxygen mass transport. The potential-dependent impedance before and after eight freeze/thaw cycles suggested that the ohmic resistance did not change, while the change of the charge transfer resistance greatly depended on the residual water amount. Among the four cells, the mass transport resistance of the cell with the largest water amount increased significantly even at the small current density region. According to the thin film-flooded agglomerate model, the interfacial charge transfer process and oxygen mass transport within the agglomerate and through the ionomer thin film in the catalyst layer both contributed to the high frequency impedance arc. From the analysis of the Tafel slopes, the mechanism of the oxygen reduction reaction (ORR) was the same after the cells experienced subzero temperature. The agglomerate diffusion changed a little in all cells and the thin film diffusion effect was obvious for the cell with the largest residual water amount. These results indicated that the slower oxygen diffusion within the catalyst layer (CL) was the main contributor for the evident performance loss after eight freeze/thaw cycles.
机译:考虑到欧姆电阻,电荷转移过程和氧气质量传输,通过电化学阻抗谱(EIS)研究了在零下温度下冻结的具有不同残留水量的燃料电池的极化损失。八个冻结/解冻循环前后的电位相关阻抗表明,欧姆电阻没有变化,而电荷转移电阻的变化很大程度上取决于残留水量。在这四个电池中,即使在较小的电流密度区域,具有最大水量的电池的传质阻力也显着增加。根据注满薄膜的团聚体模型,团聚体内的界面电荷转移过程和氧气质量传输以及通过催化剂层中的离聚物薄膜均有助于高频阻抗电弧。从塔菲尔斜率的分析来看,电池经历零度以下的温度后,氧还原反应(ORR)的机理是相同的。在所有单元中,附聚物的扩散变化不大,对于残留水量最大的单元,薄膜的扩散效果是明显的。这些结果表明,在八个冷冻/融化循环后,氧气在催化剂层(CL)中的扩散较慢是造成明显性能损失的主要原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号