...
首页> 外文期刊>Journal of power sources >Numerical simulation of liquid water and gas flow in a channel and a simplified gas diffusion layer model of polymer electrolyte membrane fuel cells using the lattice Boltzmann method
【24h】

Numerical simulation of liquid water and gas flow in a channel and a simplified gas diffusion layer model of polymer electrolyte membrane fuel cells using the lattice Boltzmann method

机译:晶格玻尔兹曼方法对通道中液态水和气体流动的数值模拟以及聚合物电解质膜燃料电池的简化气体扩散层模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Numerical simulations using the lattice Boltzmann method (LBM) are developed to elucidate the dynamic behavior of condensed water and gas flow in a polymer electrolyte membrane (PEM) fuel cell. Here, the calculation process of the LBM simulation is improved to extend the simulation to a porous medium like a gas diffusion layer (GDL), and a stable and reliable simulation of two-phase flow with large density differences in the porous medium is established. It is shown that dynamic capillary fingering can be simulated at low migration speeds of liquid water in a modified GDL, and the LBM simulation reported here, which considers the actual physical properties of the system, has significant advantages in evaluating phenomena affected by the interaction between liquid water and air flows. Two-phase flows with the interaction of the phases in the two-dimensional simulations are demonstrated. The simulation of water behavior in a gas flow channel with air flow and a simplified GDL shows that the wettability of the channel has a strong effect on the two-phase flow. The simulation of the porous separator also indicates the possibility of controlling two-phase distribution for better oxygen supply to the catalyst layer by gradient wettability design of the porous separator.
机译:开发了使用格子Boltzmann方法(LBM)的数值模拟,以阐明聚合物电解质膜(PEM)燃料电池中冷凝水和气体流动的动态行为。在此,改进了LBM模拟的计算过程,以将模拟扩展到诸如气体扩散层(GDL)之类的多孔介质,并建立了稳定可靠的多孔介质中密度差异较大的两相流模拟。结果表明,在改进的GDL中,可以在液态水的低迁移速度下模拟动态毛细管指法,并且这里报告的LBM模拟考虑了系统的实际物理特性,在评估受相互作用之间影响的现象方面具有显着优势。液态水和空气流动。在二维仿真中,演示了两相流及其各相之间的相互作用。用气流和简化的GDL对气流通道中水的行为进行仿真显示,通道的可湿性对两相流有很大影响。多孔隔板的模拟还表明了通过多孔隔板的梯度润湿性设计来控制两相分布以更好地向催化剂层供氧的可能性。

著录项

  • 来源
    《Journal of power sources》 |2009年第1期|24-31|共8页
  • 作者单位

    Division of Energy and Environmental Systems, Graduate School of Engineering, Hokkaido University N13 W8, Kita-ku, Sapporo 060-8628, Japan;

    Division of Energy and Environmental Systems, Graduate School of Engineering, Hokkaido University N13 W8, Kita-ku, Sapporo 060-8628, Japan;

    Division of Energy and Environmental Systems, Graduate School of Engineering, Hokkaido University N13 W8, Kita-ku, Sapporo 060-8628, Japan;

    Department of Battery and Fuel Cell Systems, Hitachi Research Laboratory, Hitachi, Ltd., 1-1, Omika-cho, 7-chome, Hitachi 319-1292, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PEM fuel cell; lattice boltzmann method; two-phase flow; urge density difference; gas diffusion layer; wettability;

    机译:PEM燃料电池;点阵博兹曼法两相流敦促密度差;气体扩散层;润湿性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号