...
首页> 外文期刊>Journal of power sources >Integrating engineering design improvements with exoelectrogen enrichment process to increase power output from microbial fuel cells
【24h】

Integrating engineering design improvements with exoelectrogen enrichment process to increase power output from microbial fuel cells

机译:将工程设计改进与放电子富集过程相结合,以增加微生物燃料电池的功率输出

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Microbial fuel cells (MFC) hold promise as a green technology for bioenergy production. The challenge is to improve the engineering design while exploiting the ability of microbes to generate and transfer electrons directly to electrodes. A strategy using a combination of improved anode design and an enrichment process was formulated to improve power densities. The design was based on a flow-through anode with minimal dead volume and a high electrode surface area per unit volume. The strategy focused on promoting biofilm formation via a combination of forced flow through the anode, carbon limitation, and step-wise reduction of external resistance. The enrichment process resulted in development of exoelec-trogenic biofilm communities dominated by Anaeromusa spp. This is the first report identifying organisms from the Veillonellaceae family in MFCs. The power density of the resulting MFC using a ferricyanide cathode reached 300 Wm~(-3) net anode volume (3220 mWm~(-2)), which is about a third of what is estimated to be necessary for commercial consideration. The operational stability of the MFC using high specific surface area electrodes was demonstrated by operating the MFC for a period of over four months.
机译:微生物燃料电池(MFC)有望成为一种绿色的生物能源生产技术。挑战在于改进工程设计,同时利用微生物产生电子并将电子直接转移到电极的能力。制定了结合改进阳极设计和富集工艺的策略,以提高功率密度。该设计基于流通式阳极,该阳极具有最小的死体积和每单位体积的高电极表面积。该策略的重点是通过强制流过阳极,碳限制和逐步降低外部电阻的组合来促进生物膜的形成。富集过程导致了以Anaerosusa spp为主的外源性生物膜群落的发展。这是第一份鉴定MFCs中的Veillonellaceae科生物的报告。使用铁氰化物阴极得到的MFC的功率密度达到300Wm·(-3)的净阳极体积(3220mWm·(-2)),约为商业所需的三分之一。通过使用MFC超过四个月的时间证明了使用高比表面积电极的MFC的操作稳定性。

著录项

  • 来源
    《Journal of power sources》 |2009年第2期|520-527|共8页
  • 作者单位

    BioSciences Division. Oak Ridge National Laboratory. Oak Ridge. TN 37831-6226, United States;

    The University of Tennessee, Knoxville, TN 37996, United States;

    BioSciences Division. Oak Ridge National Laboratory. Oak Ridge. TN 37831-6226, United States;

    Imperial College, London, UK;

    Imperial College, London, UK;

    BioSciences Division. Oak Ridge National Laboratory. Oak Ridge. TN 37831-6226, United States;

    BioSciences Division. Oak Ridge National Laboratory. Oak Ridge. TN 37831-6226, United States BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6226, United States;

    BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6226, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    microbial fuel cell; enrichment; exoelectrogenic; biofilm-forming; direct electron transfer; diversity;

    机译:微生物燃料电池丰富;外生电的生物膜形成;直接电子转移多样性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号