首页> 外文期刊>Journal of power sources >Assessing The Catalyst Processing For Low Temperature Cofired Ceramic-baseddirect Methanol Fuel Cells
【24h】

Assessing The Catalyst Processing For Low Temperature Cofired Ceramic-baseddirect Methanol Fuel Cells

机译:评估低温共烧陶瓷基直接甲醇燃料电池的催化剂工艺

获取原文
获取原文并翻译 | 示例
       

摘要

The low temperature cofired ceramic (LTCC) process has emerged as a promising technique to produce miniature direct methanol fuel cells (DMFCs). The currently manufactured LTCC-based DMFCs are mechanically assembled from separate components and do not take advantage of the integration merits. In order to reduce the number of stages for the production of LTCC-based DMFCs, two catalyst-loading procedures were investigated: postfiring and cofiring on the porous Ag electrodes. The performance of the catalyst on electrodes prepared by both methods was evaluated by XRD, TEM and cyclic voltammetry (CV). The postfired (PF) anode catalyst had a particle size of 5.6 nm as calculated by XRD, which was consistent with the TEM observation of 4.8 nm. XRD analysis confirmed the formation of a Pt-Ru alloy, but to a lesser extent in PF anode catalyst. The cofired (CF) anode catalyst revealed the presence of precipitated whiskers within the pores that consisted mainly of Ag and Pt-Ru alloy with a very small amount of Ru. The PF cathode catalyst film consisted of Ag and a small amount of Pt-Ag alloy, with some pore blockage by the catalyst film. The CF cathode catalyst displayed two morphologies: particles comprised of Pt precipitate and agglomerated particles comprised of Ag-Pt alloy. The electrochemical evaluation revealed that methanol oxidation reaction (MOR) on the CF catalyst anode outperformed the PF catalyst anode. This was attributed to the larger surface area, uniform catalyst composition, higher degree of alloying and ternary catalyst effects. The CF cathode catalyst also indicated superior oxygen reduction reaction (ORR) performance in terms of current density as compared with that of the PF catalyst. The experimental analysis indicated that the CF catalyst-loading method is superior to the PF for LTCC-based DMFC fabrication.
机译:低温共烧陶瓷(LTCC)工艺已经成为一种生产微型直接甲醇燃料电池(DMFC)的有前途的技术。当前制造的基于LTCC的DMFC由单独的组件机械组装而成,并且没有利用集成优势。为了减少生产基于LTCC的DMFC的阶段数,研究了两种催化剂加载程序:在多孔Ag电极上进行后烧结和共烧结。通过XRD,TEM和循环伏安法(CV)评估通过两种方法制备的电极上催化剂的性能。通过XRD计算,后烧(PF)阳极催化剂的粒径为5.6nm,这与4.8nm的TEM观察结果一致。 XRD分析证实了Pt-Ru合金的形成,但是在PF阳极催化剂中的形成程度较小。共烧(CF)阳极催化剂显示出孔中存在沉淀的晶须,该晶须主要由Ag和Pt-Ru合金以及少量Ru组成。 PF阴极催化剂膜由Ag和少量的Pt-Ag合金组成,催化剂膜有一些孔阻塞。 CF阴极催化剂表现出两种形态:由Pt沉淀物组成的颗粒和由Ag-Pt合金组成的团聚颗粒。电化学评估表明,CF催化剂阳极上的甲醇氧化反应(MOR)优于PF催化剂阳极。这归因于较大的表面积,均匀的催化剂组成,较高的合金化程度和三元催化剂作用。与PF催化剂相比,就电流密度而言,CF阴极催化剂还显示出优异的氧还原反应(ORR)性能。实验分析表明,对于基于LTCC的DMFC制造,CF催化剂的装载方法优于PF。

著录项

  • 来源
    《Journal of power sources》 |2009年第2期|935-942|共8页
  • 作者单位

    Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA;

    Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA;

    Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA;

    Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    catalyst processing; catalyst evaluation; low temperature cofired ceramic (ltcc); micro-direct methanol fuel cells; (micro-dmfcs);

    机译:催化剂处理;催化剂评估;低温共烧陶瓷(ltcc);微型直接甲醇燃料电池;(micro-dmfcs);
  • 入库时间 2022-08-18 00:25:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号