首页> 外文期刊>Journal of power sources >Characterization Of Internal Wetting In Polymer Electrolyte Membrane Gas Diffusion Layers
【24h】

Characterization Of Internal Wetting In Polymer Electrolyte Membrane Gas Diffusion Layers

机译:聚合物电解质膜气体扩散层内部润湿的表征

获取原文
获取原文并翻译 | 示例
       

摘要

Capillary pressure vs. saturation (P_C(S_L)) curves are fundamental to understanding liquid water transport and flooding in PEM gas diffusion layers (GDLs). P_C(S)_L) curves convolute the influence of GDL pore geometry and internal contact angles at the three-phase liquid/solid/gas boundary. Even simple GDL materials are a spatially non-uniform mixture of carbon fiber and binder, making a Gaussian distribution of contact angles likely, based on the Cassie-Baxter equation. For a given Gaussian contact angle distribution with mean (~θ_(Mean)) and standard deviation (σ), a realistic P_C(S_L) curve can be computed using a bundle of capillaries model and GDL pore size distribution data. As expected, computed P_C(S_L) curves show that θ_(Mean) sets the overall hydrophilic (~θ_(Mean) < 90 ℃) or hydrophobic (~θ_(Mean) >90 °) character of the GDL (i.e., liquid saturation level at a given capillary pressure), and σ affects the slope of the P_C(S_L) curve. The capillary bundle model also can be used with (~θ_(Mean), σ) as unknown parameters that are best-fit to experimentally acquired P_C(S_L) and pore size distribution data to find (~θ_(Mean), σ) values for actual GDL materials. To test this, pore size distribution data was acquired for Toray TGP-H-090 along with hysteretic liquid and gas intrusion capillary pressure curve data. High quality best-fits were found between the model and combined datasets, with GDL liquid intrusion showing fairly neutral internal surface wetting properties (~θ_(Mean) = 92° and σ = 10°) whereas gas intrusion displayed a hydrophilic character (~θ_(Mean) = 52° and σ = 8° ). External liquid advancing and receding contact angles were also measured on this same material and they also showed major hysteresis. The new methods described here open the door for better understanding of the link between GDL material processing and the wetting properties that affect flooding.
机译:毛细管压力与饱和度(P_C(S_L))曲线对于了解PEM气体扩散层(GDL)中的液态水传输和驱替作用至关重要。 P_C(S)_L)曲线使GDL孔隙几何形状和三相液体/固体/气体边界处的内部接触角的影响回旋。即使是简单的GDL材料,也是碳纤维和粘合剂在空间上不均匀的混合物,基于Cassie-Baxter方程,很可能使接触角呈高斯分布。对于给定的均值(〜θ_(Mean))和标准偏差(σ)的高斯接触角分布,可以使用一堆毛细管模型和GDL孔径分布数据来计算实际的P_C(S_L)曲线。如预期的那样,计算的P_C(S_L)曲线表明θ_(Mean)设置了GDL的总体亲水性(〜θ_(Mean)<90℃)或疏水性(〜θ_(Mean)> 90°)的特征(即液体饱和度)在给定的毛细管压力下的最大水平),而σ影响P_C(S_L)曲线的斜率。毛细管束模型还可以与(〜θ_(Mean),σ)作为未知参数一起使用,最适合通过实验获得的P_C(S_L)和孔径分布数据来查找(〜θ_(Mean),σ)值用于实际的GDL材料。为了对此进行测试,获取了Toray TGP-H-090的孔径分布数据以及滞后液体和气体侵入毛细管压力曲线数据。在模型和组合数据集之间发现了高质量的最佳拟合,GDL液体侵入显示出相当中性的内表面润湿特性(〜θ_(平均值)= 92°和σ= 10°),而气体侵入显示出亲水特性(〜θ_ (平均值)= 52°并且σ= 8°)。在相同的材料上也测量了外部液体的前进和后退接触角,它们也显示出很大的滞后现象。此处描述的新方法为更好地理解GDL材料处理与影响水浸的润湿特性之间的联系打开了大门。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号