首页> 外文期刊>Journal of power sources >Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid
【24h】

Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid

机译:合成气燃料SOFC和燃气轮机混合动力的最佳集成策略

获取原文
获取原文并翻译 | 示例
       

摘要

This article aims to develop a thermodynamic modelling and optimization framework for a thorough understanding of the optimal integration of fuel cell, gas turbine and other components in an ambient pressure SOFC-GT hybrid power plant. This method is based on the coupling of a syngas-fed SOFC model and an associated irreversible GT model, with an optimization algorithm developed using MATLAB to efficiently explore the range of possible operating conditions. Energy and entropy balance analysis has been carried out for the entire system to observe the irreversibility distribution within the plant and the contribution of different components. Based on the methodology developed, a comprehensive parametric analysis has been performed to explore the optimum system behavior, and predict the sensitivity of system performance to the variations in major design and operating parameters. The current density, operating temperature, fuel utilization and temperature gradient of the fuel cell, as well as the isentropic efficiencies and temperature ratio of the gas turbine cycle, together with three parameters related to the heat transfer between subsystems are all set to be controllable variables. Other factors affecting the hybrid efficiency have been further simulated and analysed. The model developed is able to predict the performance characteristics of a wide range of hybrid systems potentially sizing from 2000 to 2500 W itt2 with efficiencies varying between 50% and 60%. The analysis enables us to identify the system design tradeoffs, and therefore to determine better integration strategies for advanced SOFC-GT systems.
机译:本文旨在开发一种热力学建模和优化框架,以全面了解环境压力SOFC-GT混合动力装置中燃料电池,燃气轮机和其他组件的最佳集成。该方法基于合成气供给的SOFC模型和相关的不可逆GT模型的耦合,以及使用MATLAB开发的优化算法来有效探索可能的工作条件范围。已对整个系统进行了能量和熵平衡分析,以观察工厂内的不可逆分布以及不同组件的贡献。基于开发的方法,已进行了全面的参数分析,以探索最佳的系统行为,并预测系统性能对主要设计和操作参数变化的敏感性。燃料电池的电流密度,工作温度,燃料利用率和温度梯度,以及燃气轮机循环的等熵效率和温度比,以及与子系统之间的传热有关的三个参数都被设置为可控变量。影响混合效率的其他因素已得到进一步模拟和分析。所开发的模型能够预测各种混合动力系统的性能特征,这些混合动力系统的大小可能介于2000 W至2500 W itt2之间,效率在50%至60%之间变化。通过分析,我们可以确定系统设计的折衷方案,从而为高级SOFC-GT系统确定更好的集成策略。

著录项

  • 来源
    《Journal of power sources》 |2011年第22期|p.9516-9527|共12页
  • 作者单位

    Chemical Engineering, Imperial College London. London SW72AZ, UK,Earth Science and Engineering, Imperial College London, London SW72AZ, UK;

    Chemical Engineering, The University of Manchester, Manchester M13 9PL, UK;

    Politecnico di Torino, Corso Duca degli Abruzzi 24,10129 Torino, Italy;

    Earth Science and Engineering, Imperial College London, London SW72AZ, UK;

    Chemical Engineering, Imperial College London. London SW72AZ, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    solid oxide fuel cell; gas turbine; syngas; hybrid system; thermodynamic optimization; parametric sensitivity analysis;

    机译:固体氧化物燃料电池燃气轮机;合成气混合动力系统热力学优化;参数敏感性分析;
  • 入库时间 2022-08-18 00:24:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号