首页> 外文期刊>Journal of power sources >Thickness-tunable polyimide nanoencapsulating layers and their influence on cell performance/thermal stability of high-voltage LiCoO_2 cathode materials for lithium-ion batteries
【24h】

Thickness-tunable polyimide nanoencapsulating layers and their influence on cell performance/thermal stability of high-voltage LiCoO_2 cathode materials for lithium-ion batteries

机译:厚度可调的聚酰亚胺纳米封装层及其对锂离子电池高压LiCoO_2正极材料的电池性能/热稳定性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We have previously demonstrated polyimide (PI) gel polymer electrolyte (GPE)-based nanoencapsulation as a new surface modification strategy for high-voltage cathode materials. In this study, in an endeavor to attain a more comprehensive understanding of the PI GPE-based surface modification, effects of structural variation of PI encapsulating layers (specifically, focusing on PI coating thickness) on cell performance and thermal stability of high-voltage (4.4 V) LiCoO_2 are investigated. Herein, PI coating thickness is tuned between approximately 10 and 40 nm by varying polyamic acid (synthesized from pyromellitic dianhydride/oxydianiline) concentration of coating solutions. As PI coating thickness is increased, discharge C-rate capability of cells is deteriorated due to undesired rise of ionic and electronic resistance of thick PI coating layers. On the other hand, thick PI encapsulating layers are effective in mitigating interfacial exothermic reaction between delithiated LiCoO_2 and liquid electrolyte. Notably, among the various PI coating thicknesses, average thickness of 10 nm imparts well-balanced enhancement in cell performance and thermal stability. These results demonstrate that structural fine-tuning (particularly, coating thickness) of PI encapsulating layers, acting as ion-conductive protective conformal thin films, plays a significant role in optimizing their beneficial coating effects on high voltage LiCoO_2.
机译:我们以前已经证明了基于聚酰亚胺(PI)的凝胶聚合物电解质(GPE)的纳米囊封技术是高压阴极材料的一种新的表面改性策略。在这项研究中,为了更全面地了解基于PI GPE的表面改性,PI封装层的结构变化(特别是专注于PI涂层的厚度)对电池性能和高压热稳定性的影响( 4.4 V)研究了LiCoO_2。在此,通过改变涂料溶液的聚酰胺酸(由均苯四甲酸二酐/氧二苯胺合成)的浓度,将PI涂层的厚度调节在约10至40nm之间。随着PI涂层厚度的增加,由于厚PI涂层的不期望的离子和电子电阻的增加,电池的放电C速率能力劣化。另一方面,厚的PI包封层可有效减轻去锂化的LiCoO_2与液体电解质之间的界面放热反应。值得注意的是,在各种PI涂层厚度中,平均厚度为10 nm可使电池性能和热稳定性达到均衡平衡。这些结果表明,PI封装层的结构微调(特别是涂层厚度),充当离子导电保护性保形薄膜,在优化其对高压LiCoO_2的有益涂层效果方面起着重要作用。

著录项

  • 来源
    《Journal of power sources》 |2013年第15期|442-449|共8页
  • 作者单位

    Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwondo 200-701, Republic of Korea;

    Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwondo 200-701, Republic of Korea;

    Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwondo 200-701, Republic of Korea;

    Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwondo 200-701, Republic of Korea;

    Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lithium-ion batteries; High-voltage cathode materials; Surface modification; Polyimide; Encapsulating layers; Coating thickness;

    机译:锂离子电池;高压阴极材料;表面改性;聚酰亚胺;封装层;涂层厚度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号