...
首页> 外文期刊>Journal of power sources >Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries
【24h】

Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries

机译:通过钒掺杂作为锂离子电池的负极材料来改善锐钛矿型二氧化钛的电化学性能

获取原文
获取原文并翻译 | 示例
           

摘要

Undoped and 2 wt% vanadium (V~(5+)) doped TiO_2 samples are prepared in polyol medium by lowtemperature solvothermal method. The as-prepared samples are annealed at 400 ℃ for 5 h in an air atmosphere to increase the crystallinity. The XRD pattern shows that pure anatase TiO_2 is formed in both the doped and undoped samples. The maximum sizes of nanopartides are found to be 300 nm and 15 nm with spherical shaped morphology for undoped TiO_2 and V~(5+) doped TiO_2 samples respectively. In addition, 2 wt% V~(5+) doped sample exhibits excellent electrochemical performance with high reversible specific capacity and excellent rate capability compared to the undoped case. This improvement can be attributed to the substitution of the Ti~(4+) ions by V~(5+) ions in the TiO_2 lattice and create more Ti~(4+) vacancies in the lattice. This action may lead to the generation of apparently more number of free holes in the doped p-type semiconductor. Therefore, the increased hole concentration in the valence band can contribute to the electrical conductivity of the doped sample. Vanadium doping also influences the sample crystallinity and reduces the particle size, which provides a larger active surface area than that of undoped TiO_2.
机译:在多元醇介质中,通过低温溶剂热法制备了未掺杂和2 wt%的钒(V〜(5+))掺杂的TiO_2样品。将制备好的样品在空气中于400℃退火5小时,以提高结晶度。 XRD图谱表明在掺杂和未掺杂样品中均形成了纯锐钛矿型TiO_2。对于未掺杂的TiO_2和V〜(5+)掺杂的TiO_2样品,纳米颗粒的最大尺寸分别为300 nm和15 nm。此外,与未掺杂的情况相比,掺杂2 wt%的V〜(5+)的样品具有出色的电化学性能,高可逆比容量和出色的倍率性能。这种改善可以归因于TiO_2晶格中的V〜(5+)离子取代了Ti〜(4+)离子,并在晶格中产生了更多的Ti〜(4+)空位。这种作用可能导致在掺杂的p型半导体中产生更多的自由空穴。因此,价带中空穴浓度的增加可有助于掺杂样品的电导率。钒掺杂还会影响样品的结晶度并减小粒径,与未掺杂的TiO_2相比,钒具有更大的活性表面积。

著录项

  • 来源
    《Journal of power sources》 |2013年第1期|891-898|共8页
  • 作者单位

    Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 500-757, Republic of Korea;

    Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 500-757, Republic of Korea;

    Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 500-757, Republic of Korea;

    Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 500-757, Republic of Korea;

    Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 500-757, Republic of Korea;

    Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 500-757, Republic of Korea;

    Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 500-757, Republic of Korea;

    Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Bukgu, Gwangju 500-757, Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Titanium dioxide; Vanadium; Semiconductor; Anode; Lithium ion battery;

    机译:二氧化钛;钒;半导体;阳极;锂离子电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号