首页> 外文期刊>Journal of power sources >Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage
【24h】

Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

机译:用于高效,分布式电能存储的中温可逆固体氧化物电池的建模和实验性能

获取原文
获取原文并翻译 | 示例
           

摘要

Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 degrees C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 degrees C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability. (C) 2015 Elsevier B.V. All rights reserved.
机译:电能存储有望成为未来世界能源系统的重要组成部分,它执行负载均衡操作以提高可再生和分布式发电的渗透率。在可发电的燃料电池模式和可发电的电解模式之间顺序运行的可逆固体氧化物电池具有提供高效,可扩展的电存储的能力。但是,在广泛采用之前,必须解决从电池性能和耐用性到系统集成的挑战。系统设计的一个主要挑战是在两种不同的工作模式下建立有效的热管理。这项工作利用了一种操作策略来使用碳质反应物,并在中间烟囱温度(650摄氏度)下进行操作,以促进放热的燃料合成反应,从而使热过程自我维持。我们介绍了掺杂的没食子酸镧(LSGM)电解质固体氧化物电池的性能,该电池在650摄氏度的两种工作模式下均显示出高效率。已校准基于物理的电化学模型来代表电池性能,并用于模拟在独特条件下的往返运行这些可逆系统。使用电池模型评估与系统操作相关的设计决策,包括电流密度,燃料和氧化剂反应物成分以及流量配置。分析揭示了电效率,热管理,能量密度和耐用性之间的权衡。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号