...
首页> 外文期刊>Journal of power sources >Si micropyramid patterned anodes that can suppress fracture and solid electrolyte interface formation during electrochemical cycling
【24h】

Si micropyramid patterned anodes that can suppress fracture and solid electrolyte interface formation during electrochemical cycling

机译:硅微金字塔图案化阳极,可抑制电化学循环过程中的破裂和固体电解质界面的形成

获取原文
获取原文并翻译 | 示例
           

摘要

Two new types of Si patterned surfaces are presented that have either a solid micropyramid structure or a double microstructure in which nanopores are induced on the pyramid surface. The pyramid diameter ranges between 1 and 6 gm, while the pores are 50-100 nm in diameter and similar to 100-400 nm deep. It is illustrated that when they are employed as anodes, in Li-ion batteries, these patterned anodes, at high current densities of 1C, can (i) retain their initial morphology intact, despite the similar to 400% expansion that Si experiences upon lithiation, and (ii) minimize the formation of the solid electrolyte interface (SEI) that forms upon decomposition of the electrolyte. Furthermore, for the nanoporous-micropyramids, scanning electron microscopy after twenty-five electrochemical cycles reveals that no fracture occurs in either high (1 C) or low (0.1 C) current densities. This is a unique and significant observation as similar experiments, at 0.1 C, on the solid micropyramid surfaces indicate severe fracture from the first Li-insertion. It is therefore concluded that introducing a nanostructure on micropyramids significantly enhances their structural stability. This suggests that microscale Si with induced nanopores is an alternative anode candidate to nanoscale Si. (C) 2016 Published by Elsevier B.V.
机译:提出了两种新型的Si图案化表面,它们具有固态微金字塔结构或双重微结构,其中在金字塔表面上诱导了纳米孔。金字塔的直径范围为1至6 gm,而孔的直径为50-100 nm,深约100-400 nm。可以看出,当它们用作锂离子电池的阳极时,这些图案化的阳极在1C的高电流密度下可以(i)保持其初始形态完整,尽管硅在锂化过程中经历了大约400%的膨胀;以及(ii)尽量减少在电解质分解时形成的固体电解质界面(SEI)的形成。此外,对于纳米多孔微金字塔,在二十五个电化学循环后的扫描电子显微镜显示,无论是高电流密度(1 C)还是低电流密度(0.1 C),都不会发生断裂。这是一个独特而重要的观察结果,因为类似的实验(在0.1 C下)在固体微金字塔表面上显示,首次插入锂离子会导致严重断裂。因此得出结论,在微金字塔上引入纳米结构显着增强了其结构稳定性。这表明具有诱导的纳米孔的微米级硅是纳米级硅的替代阳极候选物。 (C)2016由Elsevier B.V.发布

著录项

  • 来源
    《Journal of power sources》 |2016年第15期|372-378|共7页
  • 作者单位

    Univ Arizona, Mat Sci & Engn, Tucson, AZ 85719 USA;

    Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China;

    Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China;

    Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China;

    Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China;

    Univ Arizona, Civil Engn & Engn Mech, Tucson, AZ 85719 USA|Univ ITMO, St Petersburg Natl Res Univ Informat Technol Mech, Int Lab Modern Funct Mat, St Petersburg, Russia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nanopores; Si; Binary structure; Micropyramids; Anodes;

    机译:纳米孔;硅;二元结构;微金字塔;阳极;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号