首页> 外文期刊>Journal of power sources >Enhanced electrochemical performance of Li -rich layered cathode materials via chemical activation of Li2MnO3 component and formation of spinel/carbon coating layer
【24h】

Enhanced electrochemical performance of Li -rich layered cathode materials via chemical activation of Li2MnO3 component and formation of spinel/carbon coating layer

机译:通过Li2MnO3组分的化学活化和尖晶石/碳涂层的形成来增强富锂层状正极材料的电化学性能

获取原文
获取原文并翻译 | 示例
       

摘要

Li-rich layered oxides are promising cathode materials for advanced Li-ion batteries because of their high specific capacity and operating potential. In this work, the Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 (LMNC), is modified via a carbonization-reduction process (yielding the corresponding reduced compound denoted LMNC-R). Compared to the pristine oxide, LMNC-R delivers significantly enhanced initial discharge capacity/columbic efficiency, remarkably improved rate performance with an accelerated Li+ diffusion rate, and significantly increased capacity/voltage retention. The specific energy density and energy retention after 100 cycles increase from 378.2 Wh kg(-1) and 47.7% for LMNC to 572.0 Wh kg(-1) and 71.3%, respectively, for LMNC-R. The enhancement in the electrochemical performance of LMNC-R can be attributed to the synchronous formation of the oxygen non-stoichiometric Li2MnO3-delta component and to the carbon/spinel double coating layer in the material that resulted from the post-treatment process. Thus, the carbonization-reduction modification process can be used to tailor the structural evolution procedure and to suppress the metal ion dissolution of the Li-rich layered oxide during cycling. (C) 2017 Elsevier B.V. All rights reserved.
机译:富含锂的层状氧化物因其高的比容量和工作潜力而成为有前途的锂离子电池正极材料。在这项工作中,富锂的层状氧化物Li1.2Mn0.54Ni0.13Co0.13O2(LMNC)通过碳化还原过程进行了改性(产生了相应的表示为LMNC-R的还原化合物)。与原始氧化物相比,LMNC-R的初始放电容量/库仑效率得到显着提高,Li +扩散速率加快,速率性能得到显着改善,容量/电压保持率则显着提高。 LMNC-R的100循环后的比能密度和能量保持率分别从LMNC的378.2 Wh kg(-1)和47.7%分别增加到LMNC-R的572.0 Wh kg(-1)和71.3%。 LMNC-R电化学性能的提高可归因于氧的非化学计量的Li2MnO3-δ组分的同步形成以及后处理过程中材料中的碳/尖晶石双涂层。因此,碳化还原改性过程可用于调整结构演变过程并抑制循环过程中富锂层状氧化物的金属离子溶解。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Journal of power sources》 |2017年第15期|68-75|共8页
  • 作者单位

    Jiangsu Univ, Inst Adv Mat, Zhenjiang 212013, Peoples R China;

    Jiangsu Univ, Inst Adv Mat, Zhenjiang 212013, Peoples R China;

    Jiangsu Univ, Inst Adv Mat, Zhenjiang 212013, Peoples R China;

    Jiangsu Univ, Inst Adv Mat, Zhenjiang 212013, Peoples R China;

    Jiangsu Univ, Inst Adv Mat, Zhenjiang 212013, Peoples R China;

    Jiangsu Univ, Inst Adv Mat, Zhenjiang 212013, Peoples R China;

    Jiangsu Univ, Inst Adv Mat, Zhenjiang 212013, Peoples R China;

    Changsha Res Inst Min & Met, Hunan Engn Lab Power Battery Cathode Mat, Changsha 410012, Hunan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Li-ion battery; Cathode material; Li-rich layered oxide; Spinel structure;

    机译:锂离子电池;阴极材料;富锂层状氧化物;尖晶石结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号