...
首页> 外文期刊>Journal of power sources >A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements
【24h】

A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements

机译:加压氨燃料阳极支撑的固体氧化物燃料电池:功率性能和电化学阻抗测量

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Ammonia is recognized as a useful fuel for high-temperature solid oxide fuel cell with advantages over hydrogen. The challenge of ammonia solid oxide fuel cell is its performance durability especially at elevated operating pressure, which motivates this work to measure power and impedance of a pressurized anode-supported solid oxide fuel cell (530-mu m-Ni-YSZ/3-mu m-YSZ/15-mu m-LSC-GDC) using ammonia as a fuel at both 1 atm and 3 atm, each pressure with three operating temperatures (750, 800, 850 degrees C). Results show that both pressurization and increasing temperature enhance the ammonia-fueled cell power densities which are closely matching with that of hydrogen, indicating an almost 100% ammonia conversion to hydrogen and nitrogen at T = 750 degrees C. From Bode and Nyquist plots, we find that the polarization impedance is primarily contributed by the gas diffusion impedance with summit frequencies around 5-24 Hz and secondarily due to the gas conversion with summit frequencies around 0.03-0.07 Hz. When pressure increases, the gas diffusion impedance decreases noticeably, while the gas conversion impedance increases slightly. Moreover, a stability test shows little degradation even at 3 atm, suggesting that pressurized ammonia solid oxide fuel cell is feasible for future development of the hybrid power system integrating with micro gas turbines.
机译:氨被认为是高温固体氧化物燃料电池的有用燃料,具有优于氢的优势。氨固体氧化物燃料电池的挑战在于其性能耐久性,尤其是在较高的工作压力下,这促使这项工作来测量加压阳极支撑的固体氧化物燃料电池(530μm-Ni-YSZ / 3-mu的功率和阻抗) m-YSZ /15-μm-LSC-GDC),在1个大气压和3个大气压下使用氨作为燃料,每个压力具有三个工作温度(750、800、850摄氏度)。结果表明,加压和升高温度均会提高与氢原子密度紧密匹配的氨燃料电池的功率密度,这表明在T> = 750摄氏度时,氨将近100%转化为氢和氮。根据Bode和Nyquist图,我们发现极化阻抗主要是由顶峰频率在5-24 Hz附近的气体扩散阻抗引起的,其次是由于顶峰频率在0.03-0.07 Hz附近的气体转换引起的。当压力增加时,气体扩散阻抗显着降低,而气体转化阻抗则略有增加。此外,稳定性测试显示即使在3 atm时也几乎没有降解,这表明加压氨固态氧化物燃料电池对于集成微型燃气轮机的混合动力系统的未来开发是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号