...
首页> 外文期刊>Journal of power sources >3D-Graphene supports for palladium nanoparticles: Effect of micro/macropores on oxygen electroreduction in Anion Exchange Membrane Fuel Cells
【24h】

3D-Graphene supports for palladium nanoparticles: Effect of micro/macropores on oxygen electroreduction in Anion Exchange Membrane Fuel Cells

机译:钯纳米颗粒的3D石墨烯载体:阴离子交换膜燃料电池中微孔/大孔对氧电还原的影响

获取原文
获取原文并翻译 | 示例

摘要

Hierarchically structured 3D-Graphene nanosheets as supports for palladium nanoparticles (Pd/3D-GNS) were fabricated using the Sacrificial Support Method. The pore size distribution of the 3D-GNS supports were tuned by utilizing smaller and larger sized sacrificial silica templates, EH5 and L90. Using a combination of Scanning Electron Microscopy (SEM), N-2 sorption and Rotating Ring Disc Electrode (RRDE) technique, it was demonstrated that the EH5 and L90 modified 3D-GNS supports had higher percentage of micro- (2 nm) and macropores (50 nm), respectively. The templated pores also played a role in enhancing the oxygen reduction reaction (ORR) as well as membrane electrode assembly (MEA) performance of the Pd nanoparticles in comparison to non-porous 2D-GNS supports. Particularly, incorporation of micropores increased peroxide generation at higher potentials whereas presence of macropores increased both limiting current densities and reduce peroxide yields. Integration of the Pd/GNS nano composites into a H-2/O-2 fed Anion Exchange Membrane Fuel Cell (AEMFC) operating at 60 degrees C also demonstrated the effect of modified porosity on concentration polarization or transport losses at high current densities. This strategy for the tunable synthesis of hierarchically 3D porous graphitized supports offers a platform for developing morphologically modified nanomaterials for energy conversion. (C) 2017 Elsevier B.V. All rights reserved.
机译:使用牺牲支撑方法制造了分层结构的3D-石墨烯纳米片作为钯纳米粒子(Pd / 3D-GNS)的载体。 3D-GNS载体的孔径分布可通过使用越来越小的尺寸的二氧化硅牺牲模板EH5和L90进行调整。结合使用扫描电子显微镜(SEM),N-2吸附和旋转环盘电极(RRDE)技术,证明EH5和L90修饰的3D-GNS载体具有更高的微米(<2 nm)和大孔(> 50 nm)。与无孔2D-GNS载体相比,模板化孔在增强Pd纳米粒子的氧还原反应(ORR)和膜电极组件(MEA)性能方面也起着作用。特别地,微孔的引入在较高电势下增加了过氧化物的产生,而大孔的存在增加了极限电流密度并降低了过氧化物的产率。将Pd / GNS纳米复合材料集成到在60摄氏度下操作的H-2 / O-2阴离子交换膜燃料电池(AEMFC)中,也证明了孔隙率对高电流密度下浓差极化或输运损耗的影响。用于分层3D多孔石墨化支撑体的可调合成的这种策略为开发用于能量转换的形态修饰的纳米材料提供了一个平台。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Journal of power sources》 |2018年第31期|255-264|共10页
  • 作者单位

    Natl Renewable Energy Lab, Chem & Nanosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA;

    Univ New Mexico, Adv Mat Lab, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA;

    Univ New Mexico, Adv Mat Lab, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D-Graphene; Porosity; Palladium; Oxygen electroreduction; Alkaline; Fuel cell;

    机译:3D石墨烯;孔隙率;钯;氧还原;碱性;燃料电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号