...
首页> 外文期刊>Journal of power sources >Structural engineering of Fe_(2.8)Sn_(0.2)O_4@C microano composite as anode material for high-performance lithium ion batteries
【24h】

Structural engineering of Fe_(2.8)Sn_(0.2)O_4@C microano composite as anode material for high-performance lithium ion batteries

机译:FE_(2.8)SN_(0.2)O_4 @ C微/纳米复合材料的结构工程作为高性能锂离子电池的阳极材料

获取原文
获取原文并翻译 | 示例
           

摘要

The design and synthesis of high-performance anode materials using environmentally friendly routes are demanded to meet the high-energy and high-power density requirements of next-generation lithium-ion batteries (LIBs). Herein, a facile and green gallic acid-assisted in situ synthetic strategy is demonstrated to fabricate novel Fe2.8Sn0.2O4@C composites as the anode materials of high-performance LIBs. The Fe2.8Sn0.2O4@C composites reveal a sphere-like morphology (2-3 um in diameter), which is composed of highly dispersed nano iron-tin oxide particles (similar to 25 nm) embedded in an interconnected carbon skeleton. This unique structure and composition allow Fe2.8Sn0.2O4@C to inhibit electrolyte adverse reactions, improve electron conductivity, and buffer mechanical stress for the entire electrode, resulting in its outstanding electrochemical performances. A high specific capacity of 2047 mA h g(-1) at 0.2 A g(-1) after 250 cycles, long cycling stability of 1061 mAh g(-1) at 1 A g(-1) after 1000 cycle, and rate capability of 572 mAh g(-1) at 10 A g(-1) are obtained. It is also indicated that the lithium storage in the Fe2.8Sn0.2O4@C anode involves both diffusion and surface capacitance mechanisms. The strategy reports here may open up new prospects for the design and manufacture of high-performance transition metal-based anode materials.
机译:要求使用环保途径的高性能阳极材料的设计和合成满足下一代锂离子电池(LIBS)的高能量和高功率密度要求。在此,对辅助和绿色的Gallic酸辅助原位合成策略进行说明,以制造新的Fe2.8Sn0.2O4至高性能Libs的阳极材料。 Fe2.8Sn0.2O4至C复合材料揭示了一种类似的球形形态(直径为2-3μm),其由高度分散的纳米铁 - 氧化锡颗粒(类似于25nm)嵌入在相互连接的碳骨架中。这种独特的结构和组合物允许Fe2.8Sn0.2O4至抑制电解质不良反应,改善电子电导率和整个电极的缓冲机械应力,导致其出色的电化学性能。在250次循环后,在0.2Ag(-1)的高比率为2047mA hg(-1),在1000次循环后1A的1061mAhg(-1)的长循环稳定性,速度能力获得10Ag(-1)的572mAhg(-1)。还表明Fe2.8Sn0.2O4 ~c阳极中的锂存储涉及扩散和表面电容机构。此处的策略报告可能为高性能过渡金属基阳极材料的设计和制造开辟了新的前景。

著录项

  • 来源
    《Journal of power sources》 |2020年第31期|228366.1-228366.10|共10页
  • 作者单位

    South China Normal Univ Guangzhou Key Lab Mat Energy Convers & Storage MOE Key Lab Theoret Chem Environm Sch Chem Guangzhou 510006 Peoples R China;

    South China Normal Univ Guangzhou Key Lab Mat Energy Convers & Storage MOE Key Lab Theoret Chem Environm Sch Chem Guangzhou 510006 Peoples R China;

    South China Normal Univ Guangzhou Key Lab Mat Energy Convers & Storage MOE Key Lab Theoret Chem Environm Sch Chem Guangzhou 510006 Peoples R China;

    South China Normal Univ Guangzhou Key Lab Mat Energy Convers & Storage MOE Key Lab Theoret Chem Environm Sch Chem Guangzhou 510006 Peoples R China;

    South China Normal Univ Guangzhou Key Lab Mat Energy Convers & Storage MOE Key Lab Theoret Chem Environm Sch Chem Guangzhou 510006 Peoples R China;

    South China Normal Univ Guangzhou Key Lab Mat Energy Convers & Storage MOE Key Lab Theoret Chem Environm Sch Chem Guangzhou 510006 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fe2.8Sn0.2O4@C; Gallic acid; Lithium-ion batteries; Anode material; Green synthetic routine;

    机译:fe2.8sn0.2o4@c;gallic acid;锂离子电池;阳极材料;绿色合成常规;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号