首页> 外文期刊>Journal of power sources >Sulfur doping induced anionic oxidation of niobium-pentoxide-based anode for ultralong-life and high energy-density Na-ion capacitors
【24h】

Sulfur doping induced anionic oxidation of niobium-pentoxide-based anode for ultralong-life and high energy-density Na-ion capacitors

机译:硫掺杂诱导五氧化二铌基阳极的阴离子氧化,用于超长寿命和高能量密度的钠离子电容器

获取原文
获取原文并翻译 | 示例
           

摘要

Sodium-ion supercapacitors (SICs) have attracted increasing scientific attention for mid-to-large-scale energy storage applications due to their high energy and power densities. Herein, an ultra-flexible and free-standing hybrid anode material consisting of sulfur-doped Nb2O5 quantum dots (similar to 3 nm) uniformly embedded within nitrogen and sulfur co-doped microporous carbon nanofiber (S-Nb2O5@NS-PCNF) is successfully fabricated by electrospinning followed by a sulfidation treatment. The designed 3D microporous network not only offers a continuous conducting framework for electron-transport, but also provides more accessible channels for rapid Na-ions migration. Furthermore, the S-doping induced anionic oxidation of Nb2O5 (O2-2--> O-) and S-doping in microporous carbon nanofibers result in the formation of numerous oxygen vacancies and defects for enhanced electrical conductivity and surface pseudocapacitance. In particular, the oxygen vacancies induced by the S-doping on Nb2O5 have been firstly demonstrated. This S-Nb2O5@NS-PCNF film electrode exhibits superior rate capability (124 mAh g(-1) at 4 A g(-1)) and ultralong cycling life (173 mAh g(-1) after 10000 cycles at 2 A g(-1)). The SIC full-cell comprising a S-Nb2O5@NS-PCNF anode and an activated carbon cathode delivers a maximum energy density of 112 Wh kg(-1) at 80 W kg(-1) and a ultralong-term cycling stability. This strategy provides a promising application for highly efficient energy storage systems.
机译:钠离子超级电容器(SIC)由于具有高能量和功率密度,因此在中大型储能应用中吸引了越来越多的科学关注。在此,成功地制成了一种超柔和自立的混合阳极材料,该材料由均匀嵌入氮和硫共掺杂微孔碳纳米纤维(S-Nb2O5 @ NS-PCNF)中的硫掺杂的Nb2O5量子点(近似于3 nm)组成通过静电纺丝,然后进行硫化处理制成。设计的3D微孔网络不仅为电子传输提供了连续的传导框架,而且还为Na离子的快速迁移提供了更多可访问的通道。此外,微孔碳纳米纤维中S掺杂引起Nb2O5(O2-2-→O-)的阴离子氧化和S掺杂导致形成大量的氧空位和缺陷,从而提高了电导率和表面拟电容。特别地,已经首先证明了由S掺杂在Nb 2 O 5上诱导的氧空位。该S-Nb2O5 @ NS-PCNF薄膜电极展现出卓越的速率能力(在4 A g(-1)时为124 mAh g(-1))和超长循环寿命(在2 A g 10000次循环后为173 mAh g(-1)) (-1))。包含S-Nb2O5 @ NS-PCNF阳极和活性炭阴极的SIC全电池在80 W kg(-1)时可提供112 Wh kg(-1)的最大能量密度和超长期循环稳定性。该策略为高效的能量存储系统提供了有希望的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号