...
首页> 外文期刊>Journal of Plant Growth Regulation >From Genes to Flower Patterns and Evolution: Dynamic Models of Gene Regulatory Networks
【24h】

From Genes to Flower Patterns and Evolution: Dynamic Models of Gene Regulatory Networks

机译:从基因到花型与进化:基因调控网络的动态模型

获取原文
获取原文并翻译 | 示例
           

摘要

Genes and proteins form complex dynamical systems or gene regulatory networks (GRN) that can reach several steady states (attractors). These may be associated with distinct cell types. In plants, the ABC combinatorial model establishes the necessary gene combinations for floral organ cell specification. We have developed dynamic gene regulatory network (GRN) models to understand how the combinatorial selection of gene activity is established during floral organ primordia specification as a result of the concerted action of ABC and non-ABC genes. Our analyses have shown that the floral organ specification GRN reaches six attractors with gene configurations observed in primordial cell types during early stages of flower development and four that correspond to regions of the inflorescence meristem. This suggests that it is the overall GRN dynamics rather than precise signals that underlie the ABC model. Furthermore, our analyses suggest that the steady states of the GRN are robust to random alterations of the logical functions that define the gene interactions. Here we have updated the GRN model and have systematically altered the outputs of all the logical functions and addressed in which cases the original attractors are recovered. We then reduced the original three-state GRN to a two-state (Boolean) GRN and performed the same systematic perturbation analysis. Interestingly, the Boolean GRN reaches the same number and type of attractors as reached by the three-state GRN, and it responds to perturbations in a qualitatively identical manner as the original GRN. These results suggest that a Boolean model is sufficient to capture the dynamical features of the floral network and provide additional support for the robustness of the floral GRN. These findings further support that the GRN model provides a dynamical explanation for the ABC model and that the floral GRN robustness could be behind the widespread conservation of the floral plan among eudicotyledoneous plants. Other aspects of evolution of flower organ arrangement and ABC gene expression patterns are discussed in the context of the approach proposed here.
机译:基因和蛋白质形成复杂的动力学系统或基因调控网络(GRN),可以达到多个稳态(吸引子)。这些可能与不同的细胞类型相关。在植物中,ABC组合模型为花器官细胞规格建立了必要的基因组合。我们已经开发了动态基因调控网络(GRN)模型,以了解由于ABC和非ABC基因的协同作用,在花器官原基规格期间如何建立基因活性的组合选择。我们的分析表明,花器官规范GRN达到了六个吸引子,这些吸引子具有在花发育的早期阶段在原始细胞类型中观察到的基因构型,而四个对应于花序分生组织的区域。这表明,ABC模型的基础是总体GRN动态,而不是精确的信号。此外,我们的分析表明,GRN的稳态对定义基因相互作用的逻辑功能的随机改变具有鲁棒性。在这里,我们更新了GRN模型,并系统地更改了所有逻辑功能的输出,并在这种情况下解决了原始吸引子的问题。然后,我们将原始的三态GRN简化为两态(布尔)GRN,并执行了相同的系统扰动分析。有趣的是,布尔GRN达到了与三态GRN相同数量和类型的吸引子,并且其对摄动的定性方式与原始GRN相同。这些结果表明,布尔模型足以捕获花卉网络的动态特征,并为花卉GRN的鲁棒性提供了额外的支持。这些发现进一步支持了GRN模型为ABC模型提供了动力学解释,并且花卉GRN健壮性可能是在双子叶植物中广泛保存花卉计划的背后。在本文提出的方法的背景下,讨论了花器官排列和ABC基因表达模式进化的其他方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号