...
首页> 外文期刊>Journal of Physical Oceanography >Mixing Coefficient in Stably Stratified Flows
【24h】

Mixing Coefficient in Stably Stratified Flows

机译:稳定分层流中的混合系数

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Turbulent mixing in the interior of the oceans is not as well understood as mixing in the oceanic boundary layers. Mixing in the generally stably stratified interior is primarily, although not exclusively, due to intermittent shear instabilities. Part of the energy extracted by the Reynolds stresses acting on the mean shear is expended in increasing the potential energy of the fluid column through a buoyancy flux, while most of it is dissipated. The mixing coefficient (m), the ratio of the buoyancy flux to the dissipation rate of turbulence kinetic energy epsilon, is an important parameter, since knowledge of (m) enables turbulent diffusivities to be inferred. Theory indicates that (m) must be a function of the gradient Richardson number. Yet, oceanic studies suggest that a value of around 0.2 for (m) gives turbulent diffusivities that are in good agreement with those inferred from tracer studies. Studies by scientists working with atmospheric radars tend to reinforce these findings but are seldom referenced in oceanographic literature. The goal of this paper is to bring together oceanographic, atmospheric, and laboratory observations related to (m) and to report on the values deduced from in situ data collected in the lower troposphere by unmanned aerial vehicles, equipped with turbulence sensors and flown in the vicinity of the Middle and Upper Atmosphere (MU) radar in Japan. These observations are consistent with past studies in the oceans, in that a value of around 0.16 for (m) yields good agreement between epsilon derived from turbulent temperature fluctuations using this value and epsilon obtained directly from turbulence velocity fluctuations.
机译:在海洋内部的湍流混合不如在海洋边界层中的混合好。尽管不是排他性的,但是由于间歇的剪切不稳定性,主要但不是唯一地在通常稳定的分层内部进行混合。雷诺应力作用于平均剪切力所提取的部分能量被用于通过浮力通量增加流体柱的势能,而大部分能量则被耗散了。混合系数(m)是浮力通量与湍流动能epsilon耗散率的比率,是一个重要的参数,因为(m)的知识可以推断出湍流扩散率。理论表明(m)必须是梯度Richardson数的函数。然而,海洋研究表明,(m)的值约为0.2时,湍流扩散率与示踪剂研究得出的湍流扩散率非常一致。使用大气雷达的科学家进行的研究倾向于加强这些发现,但在海洋学文献中很少提及。本文的目的是将与(m)有关的海洋,大气和实验室观测资料汇总在一起,并报告从配备有湍流传感器并在飞机上空飞行的无人飞行器从对流层低层收集的原位数据推导出的值。日本中高层大气(MU)雷达附近。这些观察结果与以前在海洋中的研究相吻合,因为(m)的值大约为0.16,可以使使用该值从湍流温度波动中得出的ε与直接从湍流速度波动中获得的ε之间达成良好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号