...
首页> 外文期刊>Journal of Physical Oceanography >The Partition of Finescale Energy into Internal Waves and Subinertial Motions
【24h】

The Partition of Finescale Energy into Internal Waves and Subinertial Motions

机译:细尺度能量分成内波和亚惯性运动

获取原文
获取原文并翻译 | 示例

摘要

Finescale vertical wavenumber strain spectra (strain: normalized buoyancy frequency variability or vertical derivative of isopycnal displacement) are consistently less steep than shear spectra (shear: vertical derivative of horizontal velocity) for vertical wavelengths smaller than several tens of meters. Interpreting the diminished ratio of shear to strain (shear/strain ≡ horizontal kinetic/available potential energy) at higher vertical wavenumber as due to a greater contribution from high-frequency internal waves is not consistent with extant internal wave-wave interaction theories. A contribution from low-aspect-ratio subinertial density fine structure (flattened structures referred to herein as vortical modes) is therefore hypothesized. Vertical wavenumber spectra for vortical mode shear and strain are inferred from the observed spectra. Observed correlations between shear squared and buoyancy frequency squared exist that cannot be explained by either linear internal waves or geostrophic vortical modes. A model of internal wave-vortical mode interactions is used to interpret the observed correlations and partition the finescale spectra into internal wave and vortical mode components. A simple Doppler shift model is used with current meter data to refine the partitioning. The inferred vortical modes have an aspect ratio of approximately f/N(f: Coriolis frequency, N: buoyancy frequency), an rms velocity of 0.7 cm s~(-1), and bandwidth-limited gradient spectra. At vertical wavelengths larger than 30 m the vortical modes are inferred to be quasi-geostrophic and in thermal wind balance. The data are interpreted as exhibiting an approximate equipartition between waves and vortical modes at vertical wavelengths smaller than 10 m.
机译:对于小于几十米的垂直波长,细尺度垂直波数应变谱(应变:归一化的浮力频率变异性或等深线位移的垂直导数)始终不如剪切谱(剪切:水平速度的垂直导数)陡峭。解释由于较高频率的内部波的贡献较大,在较高的垂直波数下,剪切应变比(剪切/应变≡水平动能/可用势能)减小的趋势与现有的内部波-波相互作用理论不一致。因此,可以推测出低纵横比的亚惯性密度精细结构(此处称为平展模式的扁平结构)的贡献。从观察到的光谱推断出涡模剪切和应变的垂直波数光谱。存在剪切平方和浮力频率平方之间的相关关系,无法用线性内波或地转涡旋模式来解释。内部波涡模式相互作用模型用于解释观测到的相关性,并将细尺度谱划分为内部波模和涡模式分量。一个简单的多普勒频移模型与电流表数据一起使用以完善分区。推断的涡旋模式的纵横比约为f / N(f:科里奥利频率,N:浮力频率),均方根速度0.7 cm s〜(-1)和带宽受限的梯度谱。在大于30 m的垂直波长处,涡旋模式被推断为准地转和热风平衡。数据被解释为在小于10 m的垂直波长处显示出波和涡旋模式之间的近似均分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号