...
首页> 外文期刊>Journal of Physical Oceanography >Potential Vorticity and the Quasigeostrophic and Semigeostrophic Mesoscale Vertical Velocity
【24h】

Potential Vorticity and the Quasigeostrophic and Semigeostrophic Mesoscale Vertical Velocity

机译:潜在涡度和准地转和半地转中尺度垂直速度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Results of a variety of numerical simulations are presented and the accuracy of quasigeostrophic (QG) and Semigeostrophic (SG) vertical velocity estimates of the total vertical velocity is analyzed. The authors examine the dependence of the results on the potential vorticity (PV) anomaly of the flow, its time evolution, and the amount of numerical diffusion. The SG ω equation is solved in a novel way in the original physical coordinates rather than in geostrophic coordinates. A three-dimensional numerical model is used that explicitly conserves the PV on isopycnal surfaces through a contour-advective semi-Lagrangian (CASL) algorithm. The numerical simulations consist initially of one or two horizontal cylinders of anomalous PV: a shear zone that induces two or three counterflowing jets. These jets destabilize and break into cyclones or anticyclones. This is accompanied by enhanced vertical motion, which exhibits a dominantly balanced quadrupole pattern in horizontal cross sections, depending on the ellipticity of the gyres, together with weak second-order inertia-gravity waves. For flows containing only negative PV anomalies the magnitude of both the QG and SG vertical velocities are smaller than the magnitude of the total vertical velocity, while the opposite occurs for flows containing only positive PV anomalies. The reason for this behavior is that the QG ω equation misses a term proportional to the Laplacian of the horizontal velocity. A new, more accurate, ω equation is proposed to recover the vertical velocity when both experimental density and horizontal velocity data are available. The SG solution is nearly always more accurate than the QG solution, particularly for the largest vertical velocity values and when the flow has single-signed PV anomalies. For flows containing both positive and negative PV anomalies, for example, mushroomlike eddies, the QG vertical velocity is a better approximation to the total vertical velocity than the SG solution. The reason for this anomalous behavior lies in one additional assumption concerning the conservation of volume that is usually adopted to derive the SG ω equation.
机译:给出了各种数值模拟的结果,并分析了准总营养(QG)和半地营养(SG)垂直速度估计值对总垂直速度的准确性。作者检查了结果对流的潜在涡度(PV)异常,其时间演化以及数值扩散量的依赖性。 SGω方程以新颖的方式在原始物理坐标而不是在地转坐标中求解。使用了三维数值模型,该模型通过轮廓对流半拉格朗日(CASL)算法显式保存等腰曲面上的PV。数值模拟最初由一个或两个异常PV的水平圆柱体组成:一个剪切区域,可引起两个或三个逆流射流。这些射流不稳定并分裂成旋风或反旋风。这伴随着增强的垂直运动,该运动在水平截面上显示出显着平衡的四极子模式,具体取决于回转体的椭圆率,以及微弱的二阶惯性重力波。对于仅包含负PV异常的流,QG和SG垂直速度的大小均小于总垂直速度的大小,而对于仅包含正PV异常的流则相反。出现这种现象的原因是,QGω方程缺少与水平速度的拉普拉斯成正比的项。当实验密度和水平速度数据均可用时,提出了一个新的,更精确的ω方程来恢复垂直速度。 SG解决方案几乎总是比QG解决方案更准确,尤其是对于最大垂直速度值以及当流量具有单符号PV异常时。对于同时包含正和负PV异常的流(例如蘑菇状涡流),QG垂直速度比SG解更好地近似于总垂直速度。这种异常行为的原因在于关于体积守恒的另一种假设,通常用于推导SGω方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号