...
首页> 外文期刊>Journal of Physical Oceanography >Baroclinic Frontal Instabilities and Turbulent Mixing in the Surface Boundary Layer. Part I: Unforced Simulations
【24h】

Baroclinic Frontal Instabilities and Turbulent Mixing in the Surface Boundary Layer. Part I: Unforced Simulations

机译:表面边界层中的斜压锋面不稳定性和湍流混合。第一部分:非强制模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Interaction between mixed layer baroclinic eddies and small-scale turbulence is studied using a non-hydrostatic large-eddy simulation (LES) model. Free, unforced flow evolution is considered, for a standard initialization consisting of an 80-m-deep mixed layer with a superposed warm filament and two frontal interfaces in geostrophic balance, on a model domain roughly 5 km × 10 km × 120 m, with an isotropic 3-m computational grid. Results from these unforced experiments suggest that shear generated in narrow frontal zones can support weak three-dimensional turbulence that is directly linked to the larger-scale baroclinic waves. Two separate but closely related issues are addressed: 1) the possible development of enhanced turbulent mixing associated with the baroclinic wave activity and 2) the existence of a downscale transfer of energy from the baroclinic wave scale to the turbulent dissipation scale. The simulations show enhanced turbulence associated with the baroclinic waves and enhanced turbulent heat flux across the isotherms of the imposed frontal boundary, relative to background levels. This turbulence develops on isolated small-scale frontal features that form as the result of frontogenetic processes operating on the baroclinic wave scale and not as the result of a continuous, inertial forward cascade through the intermediate scales. Analysis of the spectrally decomposed kinetic energy budget indicates that large-scale baroclinic eddy energy is directly transferred to small-scale turbulence, with weaker forcing at intermediate scales. For fronts with significant baroclinic wave activity, cross-frontal eddy fluxes computed from correlations of fluctuations from means along the large-scale frontal axis generally agreed with simple theoretical estimates.
机译:使用非静水大涡模拟(LES)模型研究了混合层斜压涡与小湍流之间的相互作用。对于标准的初始化,包括约80 km深的混合层(具有叠加的暖丝和两个地转平衡的正面界面),在约5 km×10 km×120 m的模型域上,考虑了自由,无强迫的流量演化各向同性的3-m计算网格。这些无力实验的结果表明,在狭窄的额叶区域产生的剪切力可以支持与大型斜斜波直接相关的弱三维湍流。解决了两个独立但密切相关的问题:1)与斜压波活动相关的增强湍流混合的可能发展,以及2)从斜压波标度到湍流耗散度的能量下移。模拟显示,相对于背景水平,与斜压波相关的湍流增强,并且跨强加的前沿边界等温线的湍流热通量增强。这种湍流是在孤立的小尺度锋面特征上发展的,这些锋面特征是在斜压波尺度上进行的前生过程的结果,而不是通过中间尺度连续,惯性地向前级联的结果。对频谱分解的动能收支的分析表明,大规模斜压涡旋能直接转移到小尺度湍流,而在中等尺度上强迫较小。对于斜压波活动较大的锋面,通过沿大型额轴的均值波动相关性计算出的跨额涡通量通常与简单的理论估计相符。

著录项

  • 来源
    《Journal of Physical Oceanography》 |2012年第10期|p.1701-1716|共16页
  • 作者单位

    College of Earth, Ocean and Atmospheric Sciences, 104 CEO AS Admin. Bldg., Oregon State University, Corvallis, OR 97331-5503;

    College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corva'lis, Oregon;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号