...
首页> 外文期刊>Journal of Physical Oceanography >Available Potential Energy and the General Circulation: Partitioning Wind, Buoyancy Forcing, and Diapycnal Mixing
【24h】

Available Potential Energy and the General Circulation: Partitioning Wind, Buoyancy Forcing, and Diapycnal Mixing

机译:可用势能和总循环:分配风,浮力强迫和斜向混合

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The ocean energy cycle is calculated using a new available potential energy (APE) decomposition, which partitions adiabatic buoyancy fluxes from diapycnal mixing, applied to results from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2), eddy-permitting ocean state estimate and observed surface buoyancy fluxes from the WHOI OAFlux project. Compared with the traditional Lorenz energy cycle, this framework provides a more accurate estimate of the background potential energy (PE) of the global oceans and the surface generation and interior fluxes of APE. Calculations of the global energy budget using 16 yr of ECCO2 output suggest that the adiabatic portion of the general circulation is maintained by a balance between the mean wind-driven upwelling that increases APE (+0.27 TW) and time-fluctuating processes, including mesoscale eddies, which release APE (-0.27 TW). The APE generated by surface buoyancy fluxes (0.46 TW) is comparable to the generation by the mean winds. The global rate of irreversible mixing (0.46 TW), which balances surface APE generation, is consistent with previous estimates of the diapycnal fluxes associated with maintaining deep stratification (see Munk and Wunsch) and a global diapycnal diffusivity of O(1 x 10(-4)) m(2) s(-1). However, the net contribution of diapycnal mixing to the total potential energy is negligible, which suggests that mixing, contrary to one current paradigm, does not place a global demand on kinetic energy dissipation. However, there are regions where mixing is significant, for example, between 3000 and 5000 m (in ECCO2), where mixing increases PE by 0.1 TW. The work provides a new framework for separating adiabatic-diabatic fluxes and for monitoring the global rate of diapycnal mixing rate using measurable surface properties such as SST and heat flux.
机译:海洋能循环是使用新的可用势能(APE)分解法计算的,该分解法划分了隔向混合的绝热浮力通量,并将其应用于估算涡流的第二阶段海洋环流和气候的结果评估和观察WHOI OAFlux项目的表面浮力通量。与传统的洛伦兹能量循环相比,该框架可以更准确地估算全球海洋的本底势能(PE)以及APE的表面产生和内部通量。使用16年ECCO2产出的全球能源预算计算表明,通过增加APE(+0.27 TW)的平均风动力上升流和包括中尺度涡旋在内的时间波动过程之间的平衡,可以维持总体循环的绝热部分。 ,会释放APE(-0.27 TW)。表面浮力通量(0.46 TW)产生的APE可与平均风产生的APE相媲美。不可逆混合的整体速率(0.46 TW)平衡了表面APE的产生,这与先前对与保持深层化有关的渗流通量的估计(见Munk和Wunsch)一致,并且渗流的整体扩散率为O(1 x 10(- 4))m(2)s(-1)。但是,辉砂混合对总势能的净贡献可忽略不计,这表明与一种当前的范式相反,混合并没有对动能耗散提出全球需求。但是,有些区域的混合效果显着,例如,在3000至5000 m(在ECCO2中)之间,混合会使PE增加0.1 TW。这项工作提供了一个新的框架,用于分离绝热-绝热通量,并使用可测量的表面性质(例如SST和热通量)来监测总辉石混合速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号