...
首页> 外文期刊>Journal of Physical Oceanography >The Deep Equatorial Ocean Circulation in Wind-Forced Numerical Solutions
【24h】

The Deep Equatorial Ocean Circulation in Wind-Forced Numerical Solutions

机译:风强迫数值解中的赤道深海环流

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We perform eddy-resolving and high vertical resolution numerical simulations of the circulation in an idealized equatorial Atlantic Ocean in order to explore the formation of the deep equatorial circulation (DEC) in this basin. Unlike in previous studies, the deep equatorial intraseasonal variability (DEIV) that is believed to be the source of the DEC is generated internally by instabilities of the upper-ocean currents. Two main simulations are discussed: solution 1, configured with a rectangular basin and with wind forcing that is zonally and temporally uniform, and solution 2, with realistic coastlines and an annual cycle of wind forcing varying zonally. Somewhat surprisingly, solution 1 produces the more realistic DEC; the large, vertical-scale currents [equatorial intermediate currents (EICs)] are found over a large zonal portion of the basin, and the small, vertical-scale equatorial currents [equatorial deep jets (EDJs)] form low-frequency, quasi-resonant, baroclinic equatorial basin modes with phase propagating mostly downward, consistent with observations. This study demonstrates that both types of currents arise from the rectification of DEIV, consistent with previous theories. The authors also find that the EDJs contribute to maintaining the EICs, suggesting that the nonlinear energy transfer is more complex than previously thought. In solution 2, the DEC is unrealistically weak and less spatially coherent than in the first simulation probably because of its weaker DEIV. Using intermediate solutions, this study finds that the main reason for this weaker DEIV is the use of realistic coastlines in solution 2. It remains to be determined what needs to be modified or included to obtain a realistic DEC in the more realistic configuration.
机译:我们对理想化的赤道大西洋进行环流的旋涡解析和高垂直分辨率数值模拟,以探索该盆地深层赤道环流(DEC)的形成。与以前的研究不同,深赤道季节内变化(DEIV)被认为是DEC的来源,是由洋流的不稳定性在内部产生的。讨论了两个主要的模拟:解决方案1,配置了一个矩形盆地,且风向在时间和地域上都是均匀的;解决方案2,具有现实的海岸线,风向的年度循环随区域变化。出乎意料的是,解决方案1产生了更现实的DEC;在流域的大带状区域上发现了大的垂直尺度的电流[赤道中间电流(EIC)],而小的垂直尺度的赤道电流[赤道深水喷流(EDJ)]形成了低频的准水流。共振斜斜赤道盆地模式,其相位大多向下传播,与观测结果一致。这项研究表明,两种电流都来自DEIV的整流,这与以前的理论是一致的。作者还发现EDJ有助于维持EIC,这表明非线性能量传递比以前认为的要复杂。在解决方案2中,由于DEIV较弱,因此与第一个模拟相比,DEC虚弱且空间连贯性较低。使用中间解决方案,本研究发现DEIV较弱的主要原因是在解决方案2中使用了实际的海岸线。尚需确定需要修改或包括哪些内容才能在更现实的配置中获得现实的DEC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号