首页> 外文期刊>Journal of Petrology >Thermodynamic Model for the Effect of Post-entrapment Crystallization on the H2O–CO2 Systematics of Vapor-saturated, Silicate Melt Inclusions
【24h】

Thermodynamic Model for the Effect of Post-entrapment Crystallization on the H2O–CO2 Systematics of Vapor-saturated, Silicate Melt Inclusions

机译:包埋后结晶对蒸气饱和硅酸盐熔体夹杂物H 2 O–CO 2 体系的影响的热力学模型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Melt inclusions (MI) represent the best source of information concerning the pre-eruptive volatile contents of magmas. If the trapped melt is enriched in volatile species, following trapping the MI may generate a vapor bubble containing volatiles that have exsolved from the melt. Thermodynamic modeling of vapor-saturated albitic composition (NaAlSi3O8) MI shows that the CO2 content of the melt phase in the MI is sensitive to small amounts of post-entrapment crystallization (PEC), whereas the H2O content of the melt is less sensitive to PEC. During PEC, CO2 is transferred from the melt to the vapor phase and the vapor bubble may contain a significant amount, if not most, of the CO2 in the MI. The contrasting behaviors of H2O and CO2 during PEC lead to H2O–CO2 trends that are similar to those predicted for open-system degassing during magma ascent and decompression. Thus, similar H2O–CO2 trends may be produced if (1) vapor-saturated MI are trapped at various depths along a magmatic ascent path, or (2) MI having the same volatile content are all trapped at the same depth, but undergo different amounts of PEC following trapping. It is not possible to distinguish between these two contrasting interpretations based on MI volatile data alone. However, by examining the volatile trends within the context of other geochemical monitors of crystallization or magma evolution progress, it may be possible to determine whether the volatile trends were generated along a degassing path or if they reflect various amounts of PEC in an originally homogeneous melt inclusion assemblage. The volatile trends resulting from PEC of MI described in this study are directly applicable to silica-rich (granitic) MI trapped in non-ferromagnesian host phases, and are only qualitatively applicable to more mafic melt compositions and/or host phases owing to modifications resulting from Fe exchange with the host and to post-entrapment re-equilibration processes.
机译:熔体夹杂物(MI)是岩浆喷发前挥发物含量的最佳信息来源。如果所捕集的熔体富含挥发性物质,则在捕集MI后可能会产生蒸气泡,其中包含从熔体中溶解出来的挥发物。饱和分子组成的热力学模型(NaAlSi 3 O 8 )MI表明,MI中熔体相的CO 2 含量为对少量的包埋后结晶(PEC)敏感,而熔体的H 2 O含量对PEC较不敏感。在PEC期间,CO 2 从熔体转移到气相,并且汽泡中MI中的CO 2 含量可能很高,即使不是最多。 PEC期间H 2 O和CO 2 的对比行为导致H 2 O–CO 2 趋势与岩浆上升和减压过程中对开放系统脱气的预测相似。因此,如果(1)沿岩浆上升路径在各个深度陷入了饱和蒸气的MI,或者(2)可能产生类似的H 2 O–CO 2 趋势。具有相同挥发物含量的MI都被捕集在相同深度,但是在捕集之后经历不同量的PEC。仅基于MI易失性数据就不可能在这两种对比解释之间进行区分。但是,通过在结晶或岩浆演化过程的其他地球化学监测器的背景下检查挥发性趋势,可以确定挥发性趋势是沿着脱气路径生成的还是反映了原始均质熔体中各种数量的PEC包裹体组合。本研究中描述的由MI的PEC引起的挥发性趋势直接适用于困在非铁磁主体相中的富含二氧化硅的(粒状)MI,并且由于定性而定性地仅适用于更多的铁镁铁熔体成分和/或主体相从铁与宿主的交换到诱捕后的重新平衡过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号