...
首页> 外文期刊>Journal of Parallel and Distributed Computing >Analysis of heterogeneous computing approaches to simulating heat transfer in heterogeneous material
【24h】

Analysis of heterogeneous computing approaches to simulating heat transfer in heterogeneous material

机译:模拟异质材料传热的异质计算方法分析

获取原文
获取原文并翻译 | 示例
           

摘要

The simulation of heat flow through heterogeneous material is important for the design of structural and electronic components. Classical analytical solutions to the heat equation PDE are not known for many such domains, even those having simple geometries. The finite element method can provide approximations to a weak form continuum solution, with increasing accuracy as the number of degrees of freedom in the model increases. This comes at a cost of increased memory usage and computation time; even when taking advantage of sparse matrix techniques for the finite element system matrix. We summarize recent approaches in solving problems in structural mechanics and steady state heat conduction which do not require the explicit assembly of any system matrices, and adapt them to a method for solving the time-depended flow of heat. These approaches are highly parallelizable, and can be performed on graphical processing units (CPUs). Furthermore, they lend themselves to the simulation of heterogeneous material, with a minimum of added complexity. We present the mathematical framework of assembly-free FEM approaches, through which we summarize the benefits of GPU computation. We discuss our implementation using the OpenCL computing framework, and show how it is further adapted for use on multiple GPUs. We compare the performance of single and dual GPUs implementations of our method with previous GPU computing strategies from the literature and a CPU sparse matrix approach. The utility of the novel method is demonstrated through the solution of a real-world coefficient inverse problem that requires thousands of transient heat flow simulations, each of which involves solving a 1 million degree of freedom linear system over hundreds of time steps.
机译:通过异质材料的热流模拟对于结构和电子组件的设计很重要。对于许多这样的领域,甚至对于那些具有简单几何形状的领域,都不知道热方程PDE的经典解析解。有限元方法可以提供对弱形式连续解的近似值,并且随着模型中自由度的增加,精度也随之提高。这是以增加的内存使用量和计算时间为代价的;即使在将稀疏矩阵技术用于有限元系统矩阵时也是如此。我们总结了解决结构力学和稳态热传导问题的最新方法,这些方法不需要显式组装任何系统矩阵,并使它们适用于解决随时间变化的热流的方法。这些方法高度可并行化,并且可以在图形处理单元(CPU)上执行。此外,它们有助于以最小的附加复杂度对异质材料进行仿真。我们介绍了无装配FEM方法的数学框架,通过它我们总结了GPU计算的好处。我们讨论了使用OpenCL计算框架的实现,并展示了它如何进一步适用于多个GPU。我们将我们的方法的单GPU和双GPU实现与文献中的先前GPU计算策略和CPU稀疏矩阵方法进行比较。通过解决现实世界中系数逆问题的方法,该方法的实用性得到了证明,该问题需要数千次瞬态热流模拟,每个模拟都涉及在数百个时间步中求解一百万个自由度线性系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号