首页> 外文期刊>The Journal of Organic Chemistry >A comparison of acetyl- and methoxycarbonylnitrenes by computational methods and a laser flash photolysis study of benzoylnitrene
【24h】

A comparison of acetyl- and methoxycarbonylnitrenes by computational methods and a laser flash photolysis study of benzoylnitrene

机译:计算方法对乙酰基和甲氧基羰基氮烯的比较以及对苯甲酰氮的激光闪光光解研究

获取原文
获取原文并翻译 | 示例
       

摘要

Density functional theory (DFT), CCSD(T), and CBS-QB3 calculations were performed to understand the chemical and reactivity differences between acetylnitrene (CH3C(=O)N) and methoxycarbonylnitrene (CH3OC(=O)N) and related compounds. CBS-QB3 theory alone correctly predicts that acetylnitrene has a singlet ground state. We agree with previous studies that there is a substantial N-O interaction in singlet acetylnitrene and find a corresponding but weaker interaction in methoxycarbonylnitrene. Methoxycarbonylnitrene has a triplet ground state because the oxygen atom stabilizes the triplet state of the carbonyl nitrene more than the corresponding singlet state. The oxygen atom also stabilizes the transition state of the Curtius rearrangement and accelerates the isomerization of methoxycarbonylnitrene relative to acetylnitrene. Acetyl azide is calculated to decompose by concerted migration of the methyl group along with nitrogen extrusion; the free energy of activation for this concerted process is only 27 kcal/mol, and a free nitrene is not produced upon pyrolysis of acetyl azide. Methoxycarbonyl azide, on the other hand, does have a preference for stepwise Curtius rearrangement via the free nitrene. The bimolecular reactions of acetylnitrene and methoxycarbonylnitrene with propane, ethylene, and methanol were calculated and found to have enthalpic barriers that are near zero and free energy barriers that are controlled by entropy. These predictions were tested by laser flash photolysis studies of benzoyl azide. The absolute bimolecular reaction rate constants of benzoylnitrene were measured with the following substrates: acetonitrile (k = 3.4 x 10(5) M-1 s(-1)), methanol (6.5 x 10(6) M-1 s(-1)), water (4.0 x 10(6) M-1 s(-1)), cyclohexane (1.8 x 10(5) M-1 s(-1)), and several representative alkenes. The activation energy for the reaction of benzoylnitrene with 1-hexene is -0.06 +/- 0.001 kcal/mol. The activation energy for the decay of benzoylnitrene in pentane is -3.20 +/- 0.02 kcal/mol. The latter results indicate that the rates of reactions of benzoylnitrene are controlled by entropic factors in a manner reminiscent of singlet carbene processes.
机译:进行密度泛函理论(DFT),CCSD(T)和CBS-QB3计算,以了解乙酰基丁二烯(CH3C(= O)N)和甲氧基羰基丁二烯(CH3OC(= O)N)和相关化合物之间的化学和反应性差异。仅凭CBS-QB3理论就可以正确地预测乙炔具有单线基态。我们同意先前的研究,认为单线态乙炔基丁二烯中存在大量的N-O相互作用,而在甲氧基羰基丁二烯中发现相应但较弱的相互作用。甲氧羰基氮化物具有三重态基态,这是因为氧原子比相应的单重态更稳定羰基腈的三重态。氧原子还稳定了库尔修斯重排的过渡态,并加速了甲氧基羰基氮烯相对于乙酰基氮烯的异构化。乙酰叠氮化物经计算通过甲基的协同迁移以及氮的挤出而分解;该协同过程的活化自由能仅为27 kcal / mol,乙酰叠氮化物热解时不会生成游离的腈。另一方面,甲氧羰基叠氮化物确实优选通过游离的氮逐步进行Curtius重排。计算出乙炔和甲氧羰基氮与丙烷,乙烯和甲醇的双分子反应,发现其焓垒接近于零,自由能垒受熵控制。这些预测通过叠氮化苯甲酰的激光闪光光解研究进行了检验。用以下底物测量苯甲酰亚硝基苯的绝对双分子反应速率常数:乙腈(k = 3.4 x 10(5)M-1 s(-1)),甲醇(6.5 x 10(6)M-1 s(-1) ),水(4.0 x 10(6)M-1 s(-1)),环己烷(1.8 x 10(5)M-1 s(-1))和几种代表性的烯烃。苯甲酰基亚戊二烯与1-己烯反应的活化能为-0.06 +/- 0.001kcal / mol。戊烷中苯甲酰基氮烯的分解活化能为-3.20 +/- 0.02 kcal / mol。后一结果表明,苯甲酰亚硝基苯的反应速率受熵因素控制,其方式使人联想起单线碳烯卡宾工艺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号