首页> 外文期刊>Journal of offshore mechanics and arctic engineering >Fully Coupled Three- Dimensional Dynamic Response of a Tension-Leg Platform Floating Wind Turbine in Waves and Wind
【24h】

Fully Coupled Three- Dimensional Dynamic Response of a Tension-Leg Platform Floating Wind Turbine in Waves and Wind

机译:张力腿平台浮动风力发电机在波浪和风中的全耦合三维动态响应

获取原文
获取原文并翻译 | 示例
           

摘要

A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11 for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency- and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison's equation, the aerodynamic loads are modeled by means of unsteady blade-element-momentum (BEM) theory, including Glauert correction for high values of the axial induction factor, dynamic stall, dynamic wake, and dynamic yaw. The aerodynamic model takes into account the wind shear and turbulence effects. For a representative geographical location, platform responses are obtained for a set of wind and wave climatic conditions. The platform responses show an influence from the aerodynamic loads, most clearly through quasi-steady mean surge and pitch responses associated with the mean wind. Further, the aerodynamic loads show an influence from the platform motion through a fluctuating rotor load contribution, which is a consequence of the wave-induced rotor dynamics. Loads and coupled responses are predicted for a set of load cases with different wave headings. Further, an advanced aero-elastic code, Flex5, is extended for the TLP wind turbine configuration and the response comparison with the simpler model shows a generally good agreement, except for the yaw motion. This deviation is found to be a result of the missing lateral tower flexibility in the simpler model.
机译:提出了张力腿平台浮动式海上风力发电机的动力学模型。该模型包括三维风荷载和波浪荷载以及相关的结构响应。整个系统由17个自由度(DOF),6个用于平台运动和11个用于风轮机制定。使用与频率和方向有关的频谱来确定三维流体动力载荷。使用莫里森方程从波浪运动学计算波浪载荷的同时,通过非定常叶片元素动量(BEM)理论对空气动力学载荷进行建模,包括对轴向感应系数高值进行的Glauert校正,动态失速,动态尾流,和动态偏航。空气动力学模型考虑了风切变和湍流效应。对于具有代表性的地理位置,针对一组风浪气候条件获得了平台响应。平台响应显示了来自空气动力负载的影响,最明显的是通过与平均风相关的准稳态平均喘振和俯仰响应。此外,空气动力学负荷通过波动的转子负荷贡献显示出来自平台运动的影响,这是波浪引起的转子动力学的结果。针对具有不同波浪方向的一组载荷工况,可以预测载荷和耦合响应。此外,针对TLP风力涡轮机配置扩展了先进的气动弹性代码Flex5,并且与偏航模型相比,与较简单模型的响应比较显示出总体良好的一致性。发现该偏差是由于在较简单的模型中缺少侧向塔架柔韧性的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号