...
首页> 外文期刊>Journal of nuclear science and technology >Modelling of Clad-to-Coolant Heat Transfer for RIA Applications
【24h】

Modelling of Clad-to-Coolant Heat Transfer for RIA Applications

机译:用于RIA应用的从冷却液到冷却液的传热建模

获取原文
获取原文并翻译 | 示例
           

摘要

Clad-to-coolant heat transfer during a Reactivity Initiated Accident (RIA) is of major importance because the clad temperature strongly influences the rod mechanical resistance against failure. The PATRICIA experimental program has been set up in order to investigate the clad-to-coolant heat transfer under fast transients. In this program, an In-conel tube centered in an annular channel was heated up by direct Joule effect. Both PWR Hot Zero Power conditions (15 MPa, 553 K-280℃-, 4 m/s) and pool conditions similar to those of the RIA experiments performed in the NSRR reactor (atmospheric pressure, room temperature, stagnant water) have been simulated. The heating rates were representative of the clad heating induced by the fuel during a RIA transient. With respect to the steady-state conditions, an increase of the Critical Heat Flux (CHF) has been observed. Boiling curves for PWR Hot Zero Power conditions have been implemented in the SCANAIR code. Further experimental results are needed to derive a reliable model in pool conditions for the simulation of NSRR experiments. Calculations of a 4-cycle UO2 rod submitted to a 30 ms power pulse in PWR conditions show that the zirconia layer has a dominant influence on the Departure from Nucleate Boiling (DNB). Once the DNB is reached, clad temperatures of the order of 1,300 K are computed and the film boiling phase lasts several seconds.
机译:在反应性事故(RIA)期间,从包层到冷却剂的传热非常重要,因为包层温度强烈影响杆的机械抗故障能力。已经建立了PATRICIA实验程序,以研究在快速瞬变情况下从包层到冷却剂的传热。在该程序中,通过直接的焦耳效应加热以环形通道为中心的Inconel管。模拟了PWR热零功率条件(15 MPa,553 K-280℃-,4 m / s)和与NSRR反应器中进行的RIA实验相似的池条件(大气压,室温,积水) 。加热速率代表在RIA瞬变期间由燃料引起的包层加热。关于稳态条件,已经观察到临界热通量(CHF)的增加。在SCANAIR代码中已实现了PWR热零功率条件的沸腾曲线。需要进一步的实验结果来得出池条件下用于模拟NSRR实验的可靠模型。在压水堆条件下施加30 ms功率脉冲的4周期UO2棒的计算表明,氧化锆层对核沸腾物(DNB)的脱离具有主要影响。一旦达到DNB,计算出的复合温度约为1300 K,并且薄膜沸腾阶段持续几秒钟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号