首页> 外文期刊>Journal of nuclear science and technology >Whole Core Transport Calculation Employing Hexagonal Modular Ray Tracing and CMFD Formulation
【24h】

Whole Core Transport Calculation Employing Hexagonal Modular Ray Tracing and CMFD Formulation

机译:使用六角形模块化射线追踪和CMFD公式进行整体堆芯传输计算

获取原文
获取原文并翻译 | 示例
       

摘要

A whole core transport module for hexagonal cores is developed and implemented in the DeCART code. The module consists of a whole core ray tracing kernel for solving the two-dimensional (2-D) method of characteristics (MOC) equation and a coarse-mesh finite difference (CMFD) kernel to accelerate the MOC transport iteration. Whole core ray tracing is realized by incorporating a hexagonal-assembly-based modular ray tracing scheme. The complete path linking constraint for the modular ray is achieved by adjusting the ray angle and the ray spacing in the range of [0, 30°], and the complete reflection constraint at the problem boundary is satisfied by defining the corresponding reflection angles at the reflection surfaces. The hexagonal CMFD kernel employs unstructured nodes that can treat the irregular-shaped gap cells as well as the regular hexagonal cells. Some features such as cell ray approximation and modified cycle ray scheme are employed to reduce the memory requirements for the segment information and the boundary angular fluxes, respectively. The solution accuracy and execution performance of the hexagonal module are examined for the C5G7 hexagonal variation problems that are established by modifying the original C5G7MOX 3-D extension benchmark. The CMFD kernel shows a significant speedup of 60 in the 2-D core problem. The cell ray approximation does not violate the original solution accuracy when using the default ray spacing of the DeCART code. The modified cycle ray scheme shows its superiority over the simple core ray sweeping scheme in terms of the memory requirement and the original cycle ray scheme in terms of the computing time. Compared with the Monte Carlo solutions, the DeCART solution agrees to within 40 pcm for the eigenvalue and 2% for the pin power distribution.
机译:用DeCART代码开发并实现了用于六角形磁芯的整个磁芯传输模块。该模块由用于解决特征(MOC)方程的二维(2-D)方法的全芯射线跟踪内核和用于加速MOC传输迭代的粗网有限差分(CMFD)内核组成。通过结合基于六角形组件的模块化射线跟踪方案,可以实现整个核心射线跟踪。通过在[0,30°]的范围内调整射线角度和射线间距,可以实现模块化射线的完整路径链接约束,并且通过定义相应的反射角来满足问题边界处的完全反射约束。反射面。六边形CMFD内核采用非结构化节点,可以处理不规则形状的间隙单元以及规则六边形单元。诸如细胞射线逼近和改进的循环射线方案之类的一些特征被用来分别减少对分段信息和边界角通量的存储需求。针对通过修改原始C5G7MOX 3-D扩展基准而建立的C5G7六角形变化问题,检查了六角形模块的解决方案精度和执行性能。 CMFD内核在2-D内核问题中显示出60的显着提速。使用DeCART代码的默认射线间距时,单元射线近似值不会违反原始求解精度。修改后的循环射线方案在存储需求方面和简单的循环射线方案在计算时间方面均表现出优于简单核心射线扫描方案的优势。与蒙特卡洛解决方案相比,DeCART解决方案的特征值在40 pcm以内,引脚功率分布在2%以内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号