...
首页> 外文期刊>Journal of neural engineering >Marked point process representation of oscillatory dynamics underlying working memory
【24h】

Marked point process representation of oscillatory dynamics underlying working memory

机译:标记点过程表示振荡动力学底层工作记忆

获取原文
获取原文并翻译 | 示例

摘要

Objective. Computational models of neural activity at the meso-scale suggest the involvement ofdiscrete oscillatory bursts as constructs of cognitive processing during behavioral tasks. Classicalsignal processing techniques that attempt to infer neural correlates of behavior from meso-scaleactivity employ spectral representations of the signal, exploiting power spectral density techniquesand time–frequency (T–F) energy distributions to capture band power features. However, suchanalyses demand more specialized methods that incorporate explicitly the concepts ofneurophysiological signal generation and time resolution in the tens of milliseconds. This paperfocuses on working memory (WM), a complex cognitive process involved in encoding, storing andretrieving sensory information, which has been shown to be characterized by oscillatory bursts inthe beta and gamma band. Employing a generative model for oscillatory dynamics, we present amarked point process (MPP) representation of bursts during memory creation and readout. Weshow that the markers of the point process quantify specific neural correlates of WM. Approach. Wedemonstrate our results on field potentials recorded from the prelimbic and secondary motorcortices of three rats while performing a WM task. The generative model for single channel,band-passed traces of field potentials characterizes with high-resolution, the timings andamplitudes of transient neuromodulations in the high gamma (80–150 Hz, γ) and beta (10–30 Hz,β) bands as an MPP. We use standard hypothesis testing methods on the MPP features to check forsignificance in encoding of task variables, sensory stimulus and executive control while comparingencoding capabilities of our model with other T–F methods. Main Results. Firstly, the advantagesof an MPP approach in deciphering encoding mechanisms at the meso-scale is demonstrated.Secondly, the nature of state encoding by neuromodulatory events is determined. Third, wedemonstrate the necessity of a higher time resolution alternative to conventionally employed T–Fmethods. Finally, our results underscore the novelty in interpreting oscillatory dynamicsencompassed by the marked features of the point process. Significance. An MPP representation ofmeso-scale activity not just enables a rich, high-resolution parameter space for analysis but alsopresents a novel tool for diverse neural applications.
机译:客观的。中间规模神经活动的计算模型表明了参与离散振荡突发作为行为任务期间认知处理的构建。古典试图从中间级推断神经关系的信号处理技术活动采用信号的光谱表示,利用功率谱密度技术和时间频率(T-F)能量分布以捕获带功率特征。但是,这样分析要求更专业的方法,该方法并入明确的概念神经生理信号产生和时间分辨率在数十毫秒。这篇报告侧重于工作记忆(WM),这是一个复杂的认知过程,涉及编码,存储和检索感官信息,已被证明的特征在于振荡爆发β和伽马带。采用用于振荡动力学的生成模型,我们提出了一个在内存创建和读数期间标记点进程(MPP)表示突发。我们表明点过程的标记量化了WM的特定神经相关性。方法。我们展示我们的结果对从预售和二次电动机记录的现场电位上在执行WM任务时三个大鼠的皮质。单通道的生成模型,带传递的现场电位迹线具有高分辨率,定时和的特征高γ(80-150Hz,γ)和β(10-30Hz,)瞬时神经调节幅度(10-30 Hz,β)带作为MPP。我们在MPP功能上使用标准假设检测方法来检查在比较时编码任务变量,感官刺激和行政控制的重要性使用其他T-F方法编码模型的功能。主要结果。首先,优势证实了在中间规模处解码编码机制的MPP方法。其次,确定了神经调节事件的状态编码的性质。第三,我们展示常规采用的T-F的更高时间分辨率的必要性方法。最后,我们的结果强调了解释振荡动力学的新颖性包含点过程的标记特征。意义。 MPP表示中间规模的活动不仅可以实现丰富的高分辨率参数空间,但也是为不同的神经应用提供了一种新颖的工具。

著录项

  • 来源
    《Journal of neural engineering 》 |2021年第2期| 1-25| 共25页
  • 作者单位

    Department of Electrical and Computer Engineering University of Florida Gainesville FL United States of America;

    Department of Neurology University of California San Francisco CA United States of America;

    Department of Electrical and Computer Engineering University of Florida Gainesville FL United States of America Department of Biomedical Engineering University of Florida Gainesville FL United States of America;

    Department of Electrical and Computer Engineering University of Florida Gainesville FL United States of America Department of Biomedical Engineering University of Florida Gainesville FL United States of America Department of Neurology University of Florida Gainesville FL United States of America Department of Neuroscience McKnight Brain Institute University of Florida Gainesville FL United States of America;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    working memory; time–frequency methods; local field potentials; generative model; point process modeling; pattern recognition;

    机译:工作记忆;时频方法;本地现场潜力;生成模型;点过程建模;模式识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号