首页> 外文期刊>Journal of Nanoparticle Research >SnO2, IrO2, Ta2O5, Bi2O3, and TiO2 nanoparticle anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H2
【24h】

SnO2, IrO2, Ta2O5, Bi2O3, and TiO2 nanoparticle anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H2

机译:SnO 2 ,IrO 2 ,Ta 2 O 5 ,Bi 2 O < sub> 3 和TiO 2 纳米颗粒阳极:电化学氧化与水的阴极还原结合产生分子H 2

获取原文
获取原文并翻译 | 示例
       

摘要

In recent years, the search for environmentally friendly alternative energy sources with reduced carbon footprints has increased. The coupling of photovoltaic power sources with advanced electrolysis systems for hydrogen production via water splitting using organic contaminants as sacrificial electron donors has been considered to a be viable alternative. In this report, we demonstrated the feasibility of a scaled-up rooftop prototype of the proposed hybrid photovoltaic-electrolysis system, which utilizes semiconductor nanoparticles coated on to metal substrates as electrodes for the generation of hydrogen coupled with the oxidation of wastewater. Application of an anodic bias of >2.0 V to bismuth-doped TiO2 (BiO x –TiO2) on Ti metal anodes with a sequential under-coatings of nanoparticulate SnO2, IrO2, Ta2O5, and Bi2O3 results in the electrochemical degradation of a variety of organic chemical contaminants in water (i.e., rhodamine B (Rh.B), methylene blue (MB), salicylic acid, triclosan, and phenol) and actual wastewater from a chemical manufacturing plant, while at the same time, molecular hydrogen is produced at stainless steel (SS) cathodes. The kinetics of the anodic substrates oxidation is investigated as a function of the cell current (I cell), substrate concentration, and background electrolyte composition (e.g., NaCl, Na2SO4, or seawater). Average current efficiencies were found to be in the range of 4–22 %, while the cathodic current and energy efficiencies for hydrogen production were found to be in the range of 50–70 % and 20–40 %, respectively.
机译:近年来,对减少碳足迹的环境友好型替代能源的搜索有所增加。光伏电源与先进的电解系统的耦合,通过使用有机污染物作为牺牲电子给体的水分解来制氢,已被认为是可行的选择。在此报告中,我们证明了所提议的混合光伏电解系统的放大屋顶原型的可行性,该系统利用涂覆在金属基底上的半导体纳米粒子作为电极,以产生氢气以及废水氧化。 > 2.0 V阳极偏压在钛金属阳极上依次掺杂铋的TiO 2 (BiO x –TiO 2 )纳米颗粒SnO 2 ,IrO 2 ,Ta 2 O 5 和Bi 2的底涂层 O 3 导致水中多种有机化学污染物(如罗丹明B(Rh.B),亚甲基蓝(MB),水杨酸,三氯生和苯酚)和化工厂的实际废水,同时在不锈钢(SS)阴极上产生分子氢。研究了阳极底物氧化的动力学与电池电流(I cell ),底物浓度和背景电解质成分(例如NaCl,Na 2 SO)的关系。 4 或海水)。发现平均电流效率在4-22%的范围内,而制氢的阴极电流和能量效率分别在50-70%和20-40%的范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号