首页> 外文期刊>Journal of Nanoparticle Research >Raman study of cations’ distribution in ZnxMg1−xFe2O4 nanoparticles
【24h】

Raman study of cations’ distribution in ZnxMg1−xFe2O4 nanoparticles

机译:Zn x Mg 1-x Fe 2 O 4 纳米粒子中阳离子分布的拉曼研究

获取原文
获取原文并翻译 | 示例
       

摘要

In a complementary way, Raman and Mössbauer spectroscopy were successfully employed to assess the cations’ distribution among the tetrahedral (A-site) and octahedral (B-site) sites of nonosized Zn x Mg1−x Fe2O4 (0 ≤ x ≤ 1) cubic ferrite structure, synthesized by combustion reaction method. Nanoparticles with little change in size distributions, in the 40 nm (x = 0.0) up to 42 nm (x = 1.0) were obtained. Mössbauer data indicated that as the Zn-content (x) increases in the range 0 ≤ x ≤ 1, the Fe3+ ion monotonically increases (decreases) the A-site (B-site) occupancy up to nearly equal values at the highest end x value. Analysis of the Raman data, however, confirms that the three highest energy modes around 650, 668 and 710 cm−1 are assigned to Zn–O (B-site), Fe–O (A-site) and Mg–O (A-site) vibrations, respectively. Additionally, in agreement with the Mössbauer data, the Raman data show that as the Zn-content (x) increases in the range 0 ≤ x ≤ 1, the occupancy of A-sites by Mg2+ ions monotonically reduces with concomitant increase of A- and B-sites occupancy by Fe3+ and Zn2+ ions, respectively. Indeed, combination of the two sets of spectroscopic data (Raman and Mössbauer) provides an effective protocol for assessing the cations’ distribution within the crystal structure of nanosized quaternary cubic ferrite samples running for instance from [ textFe0.423 + textMg0.582 + ]A [ textZn0.202 + textMg0.222 + textFe1.583 + ]B O42 - left[ {{text{Fe}}_{0.42}^{3 + } {text{Mg}}_{0.58}^{2 + } } right]^{A} left[ {{text{Zn}}_{0.20}^{2 + } {text{Mg}}_{0.22}^{2 + } {text{Fe}}_{1.58}^{3 + } } right]^{B} O_{4}^{2 - } at x = 0.2 up to [ textFe1.03 + ]A [ textZn0.602 + textMg0.402 + textFe1.03 + ]B textO42 - left[ {{text{Fe}}_{1.0}^{3 + } } right]^{A} left[ {{text{Zn}}_{0.60}^{2 + } {text{Mg}}_{0.40}^{2 + } {text{Fe}}_{1.0}^{3 + } } right]^{B} {text{O}}_{4}^{2 - } at x = 0.6.
机译:作为补充,成功地使用拉曼光谱和穆斯堡尔光谱法评估了阳离子在未振荡的Zn x Mg 1的四面体(A部位)和八面体(B部位)之间的分布通过燃烧反应法合成了-x Fe 2 O 4 (0≤x≤1)立方铁素体结构。获得了尺寸分布几乎没有变化的纳米颗粒,在40 nm(x = 0.0)到42 nm(x = 1.0)之间。 Mössbauer数据表明,随着Zn含量(x)在0≤x≤1范围内增加,Fe 3 + 离子单调增加(减少)A位(B位)的占有率。到最高值x值几乎相等。然而,对拉曼数据的分析证实,在650、668和710 cm −1 附近的三个最高能量模式被分配给Zn–O(B位置),Fe–O(A位置)。 )和Mg–O(A站点)振动。此外,与Mössbauer数据一致,拉曼数据表明,随着Zn含量(x)在0≤x≤1范围内增加,Mg 2 + 离子对A位的占有率Fe 3 + 和Zn 2 + 离子分别伴随A和B位占据的增加而单调减少。实际上,两组光谱数据(拉曼和莫斯鲍尔)的组合提供了一种评估阳离子在纳米级四方立方铁氧体样品晶体结构中阳离子分布的有效协议,例如[textFe 0.42 < sup> 3 + textMg 0.58 2 + ] A [textZn 0.20 2 + textMg 0.22 2 + textFe 1.58 3 + ] B O左 4 2- [{{text {Fe}} _ {0.42} ^ {3 +} {text {Mg}} _ {0.58} ^ {2 +} } right] ^ {A} left [{{text {Zn}} _ {0.20} ^ {2 +} {text {Mg}} _ {0.22} ^ {2 +} {text {Fe}} __ {1.58} ^ {3 +}}右] ^ {B} O_ {4} ^ {2-} at x = 0.2直到[textFe 1.0 3 + ] A [textZn 0.60 2 + textMg 0.40 2 + textFe 1.0 3 + ] B textO 4 2-左[{{text {Fe}} _ {1.0} ^ {3 +}}右] ^ {A}左[{{text {Zn}} _ {0.60} ^ {2 +} {text {Mg}} _ {0.40} ^ {2 +} {text {Fe}} _ {1.0} ^ {3 +}} right] ^ {B} {text {O}} _ {4} ^ {2-} at x = 0.6。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号