首页> 外文期刊>Journal of Mineralogical and Petrological Sciences >Crystal structure refinements of legrandite, adamite, and paradamite: The complex structure and characteristic hydrogen bonding network of legrandite
【24h】

Crystal structure refinements of legrandite, adamite, and paradamite: The complex structure and characteristic hydrogen bonding network of legrandite

机译:膨润土,红铁矿和方石英的晶体结构细化:膨润土的复杂结构和特征氢键网络

获取原文
获取原文并翻译 | 示例
           

摘要

Crystal structures of legrandite [Zn_2AsO_4(OH)-H_2O; a = 12.8014(11), b = 7.9390(3), c = 10.2262(5) A, β = 104.490(2)°; space group F2_1/c; Z = 8], adamite [Zn_2AsO_4(OH); a = 8.3428(11), b = 8.5664(10), c = 6.0769(8) A; space group Pnnm; Z = 4], and paradamite [Zn_2AsO_4(OH); a = 5.8438(5), b = 6.7226(6), c = 5.6566(4) A, a = 104.348(3), β = 92.320(3), y = 76.683(3)°; space group P1; Z = 2] were investigated by single-crystal X-ray diffraction and were refined to the R_1 values of 0.0212, 0.0282, and 0.0270 using 2800, 588, and 1128 unique reflections with F_o >4σ(F_o), respectively. The chemical formula of legrandite is similar to that of adamite and paradamite, except for the presence of water molecules. In the structure of legrandite, the hydrogen atoms are distributed among the two hydroxyl and the two water molecule positions. On the basis of bond valence calculations, the hydrogen bonding in legrandite can be classified into three types: (1) one acceptor with linear normal hydrogen bonding (Type-A), (2) two acceptors with linear hydrogen bonding and one excess weak hydrogen bonding (Type-B), and (3) several acceptors with one linear hydrogen bondings and several weak 0hydrogen bondings by weak electrostatic interactions (Type-C). The variety of hydrogen bonding interactions provides structural stability to legrandite. The Zn3-01 bond shows a remarkable distance of 2.341(2) A, which is ascribed to the three-dimensional periodicity of the complex mineral structure. The local structures of adamite and paradamite violate a fundamental crystallographic law with respect to the cation coordination number and unit cell volume. The crystal structures of legrandite and paradamite are characterized by proton transfer tunnels running along the crystal axes.
机译:菱铁矿的晶体结构[Zn_2AsO_4(OH)-H_2O; a = 12.8014(11),b = 7.9390(3),c = 10.2262(5)A,β= 104.490(2)°;空间组F2_1 / c; Z = 8],金刚石[Zn_2AsO_4(OH); a = 8.3428(11),b = 8.5664(10),c = 6.0769(8)A;空间群Pnnm; Z = 4]和方沸石[Zn_2AsO_4(OH); a = 5.8438(5),b = 6.7226(6),c = 5.6566(4)A,a = 104.348(3),β= 92.320(3),y = 76.683(3)°;空间组P1; Z = 2]通过单晶X射线衍射进行了研究,并分别使用2800、588和1128次唯一反射(F_o>4σ(F_o))将R_1值精炼为0.0212、0.0282和0.0270。除水分子的存在外,绿铁矿的化学分子式与金刚石和滑石的化学式相似。在菱铁矿的结构中,氢原子分布在两个羟基和两个水分子位置之间。根据键合价的计算,豆锰矿中的氢键可分为三种:(1)一个具有线性正氢键的受体(A型),(2)两个具有线性氢键的受体和一个过量的弱氢(B型),和(3)几个带有一个线性氢键的受主,以及几个弱静电相互作用引起的几个弱0氢键(C型)。氢键相互作用的多样性为豆铁矿提供了结构稳定性。 Zn3-01键的显着距离为2.341(2)A,这归因于复杂矿物结构的三维周期性。在阳离子配位数和晶胞体积方面,金刚砂和准damdamite的局部结构违反了基本的晶体学定律。绿铁矿和玄武岩的晶体结构的特征在于沿着晶轴延伸的质子传递隧道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号