首页> 外文期刊>Journal of Membrane Science >Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation
【24h】

Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation

机译:溴化聚(2,6-二苯基-1,4-苯撑氧)的碳纳米管复合膜用于气体分离

获取原文
获取原文并翻译 | 示例
       

摘要

The mechanical strength of polymeric membranes is one of the limitations in their applications. Carbon nanotubes (CNTs) are very effective in reinforcing polymeric materials, but it is unknown whether they degrade the membranes' gas separation performance. Using brominated poly(2,6-diphenyl-1,4-phenylene oxide) (BPPO_(dp)) as an example, we show that pristine single-wall CNTs (SWNTs) and multi-wall CNTs (MWNTs) formed polymeric nanocomposite membranes with BPPO_(dp). The composite membranes had an increased CO_2 permeability but a similar CO_2/N_2 selectivity compared to the corresponding pure-polymer membrane. The CO_2 permeability increased with increasing the CNT content and reached a maximum of 155 Barrer at 9 wt% of SWNTs, or 148 Barrer at 5 wt% of MWNTs. The CO_2/N_2 separation performance was insensitive to the MWNT diameter or length. Carboxylic acid-functionalized SWNTs (COOH-SWNTs) dispersed more uniformly in BPPO_(dp), and neither increased the gas permeability nor deteriorated the gas separation performance. Thus, it is feasible to add CNTs to polymeric membranes for improved mechanical strength without deteriorating the gas separation performance of the membranes. The pristine CNT-enhanced gas permeability was attributed to the formed nanogaps surrounding the CNTs.
机译:聚合物膜的机械强度是其应用中的限制之一。碳纳米管(CNTs)在增强聚合物材料方面非常有效,但是未知它们是否会降低膜的气体分离性能。以溴化聚(2,6-二苯基-1,4-苯撑氧)(BPPO_(dp))为例,我们显示原始的单壁CNT(SWNT)和多壁CNT(MWNT)形成了聚合物纳米复合膜与BPPO_(dp)。与相应的纯聚合物膜相比,复合膜的CO_2渗透性提高,但CO_2 / N_2的选择性相似。 CO_2渗透性随CNT含量的增加而增加,在SWNTs的9 wt%时达到最大值155 Barrer,在MWNTs的5 wt%时达到148 Barrer。 CO_2 / N_2分离性能对MWNT直径或长度不敏感。羧酸官能化的单壁碳纳米管(COOH-SWNTs)更均匀地分散在BPPO_(dp)中,既不增加气体渗透率也不降低气体分离性能。因此,可行的是,将CNT添加到聚合物膜中以提高机械强度而不降低膜的气体分离性能。原始的CNT增强的透气性归因于围绕CNT形成的纳米间隙。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号