首页> 外文期刊>Journal of Mathematical Sciences >KAEHLER GEOMETRY OF HYPERBOLIC TYPE ON THE MANIFOLD OF NONDEGENERATE m-PAIRS
【24h】

KAEHLER GEOMETRY OF HYPERBOLIC TYPE ON THE MANIFOLD OF NONDEGENERATE m-PAIRS

机译:非对生m-对流形上的双曲型的KAEHLER几何

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A nondegenerate m-pair (A, E) in an n-dimensional projective space RP_n consists of an m-plane A and an (n-m-l)-plane E in RP_n, which do not intersect. The set n_m~n of all nondegenerate m-pairs RP_n is a 2(n - m)(n - m -1)-dimensional, real-complex manifold. The manifold n_m~n is the homogeneous space n_m~n = GL(n +1l,R)/GL(m + 1,R) × GL(n - m,R) equipped with an internal Kahler structure of hyperbolic type. Therefore, the manifold n_m~n is a hyperbolic analogue of the complex Grassmanian CG_(m,n) = U(n+l)/U(m+1)×U(n-m). In particular, the manifold of 0-pairs n_0~n= GL(n+1,R)/GL(1,R)× GL(n,R) is a hyperbolic analogue of the complex projective space CP_n = U(n+1)/U(1) ×U(n). Similarly to CP_n, the manifold n_0~n is a Kaehler manifold of constant nonzero holomorphic sectional curvature (relative to a hyperbolic metrics). In this sense, n_0~n is a hyperbolic spatial form. It was proved in [6] that the manifold of 0-pairs n_0~n is globally symplectomorphic to the total space T~*RP_n of the cotangent bundle over the projective space RP_n. A generalization of this result (see [7]) is as follows: the manifold of nondegenerate m-pairs n_m~n is globally symplectomorphic to the total space T~*RG_(m,n) of the cotangent bundle over the Grassman manifold RG_(m,n) of m-dimensional subspaces of the space RP_n. In this paper, we study the canonical Kahler structure on n_m~n. We describe two types of submanifolds in n_m~n, which are natural hyperbolic spatial forms holomorphically isometric to manifolds of 0-pairs in RP_(m+1) and in RP_(n-m), respectively. We prove that for any point of the manifold n_m~n, there exist a 2(n - m)-parameter family of 2(m + 1)-dimensional hyperbolic spatial forms of first type and a 2(m + l)-parameter family of 2(n - m)-dimensional hyperbolic spatial forms of second type passing through this point. We also prove that natural hyperbolic spatial forms of first type on n_m~n are in bijective correspondence with points of the manifold n_(m+1)~n and natural hyperbolic spatial forms of second type on n_m~n are in bijective correspondence with points of the manifolds n_(m-1)~n.
机译:n维投影空间RP_n中的非退化m对(A,E)由不相交的m平面A和RP_n中的(n-m-1)平面E组成。所有非简并m对RP_n的集合n_m〜n是2(n-m)(n-m -1)维实实流形。流形n_m〜n是齐次空间n_m〜n = GL(n + 1l,R)/ GL(m + 1,R)×GL(n-m,R),其内部装有双曲型Kahler结构。因此,流形n_m〜n是复数Grassmanian CG_(m,n)= U(n + 1)/ U(m + 1)×U(n-m)的双曲型。特别是0对n_0〜n = GL(n + 1,R)/ GL(1,R)×GL(n,R)的流形是复射影空间CP_n = U(n + 1)/ U(1)×U(n)。与CP_n相似,流形n_0〜n是具有恒定非零全纯截面曲率(相对于双曲度量)的Kaehler流形。从这个意义上讲,n_0〜n是双曲空间形式。在[6]中证明,0对n_0〜n的流形在投影空间RP_n上整体上表示余切束的总空间T〜* RP_n。该结果的概括(请参见[7])如下:非退化m对的流形n_m〜n的流形与格拉斯曼流形RG_上余切束的总空间T〜* RG_(m,n)全局对称。空间RP_n的m维子空间的(m,n)。本文研究n_m〜n上的规范Kahler结构。我们在n_m〜n中描述了两种子流形,它们分别是自然双曲空间形式,与RP_(m + 1)和RP_(n-m)中0对的流形全等距。我们证明对于流形n_m〜n的任何点,存在一个2(m + 1)维第一类双曲空间形式的2(n-m)参数族和一个2(m + l)参数穿过此点的第二类2(n-m)维双曲空间形式的族。我们还证明了n_m〜n上第一类型的自然双曲空间形式与流形n_(m + 1)〜n的点双射对应,n_m〜n上第二类型的自然双曲空间形式与点双射对应流形n_(m-1)〜n

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号