首页> 外文期刊>Journal of Mathematical Chemistry >The potential for practical improvements in cancer diagnostics by mathematically-optimized magnetic resonance spectroscopy
【24h】

The potential for practical improvements in cancer diagnostics by mathematically-optimized magnetic resonance spectroscopy

机译:通过数学优化的磁共振波谱对癌症诊断进行实际改进的潜力

获取原文
获取原文并翻译 | 示例
       

摘要

The fast Padé transform (FPT) has been benchmarked as a stable, high-resolution processor. In this paper, the performance of the FPT is examined for in vitro magnetic resonance (MR) spectroscopic data associated with ovarian, breast and prostate cancer as well as benign or normal tissue. We also examine how the FPT handles in vivo MR spectroscopic (MRS) time signals from human brain encoded by high field and clinical (1.5 T) scanners. Salient comparisons are made with the conventional data analysis through the fast Fourier transform (FFT). Separation of noise from genuine signal is carried out with a view to practical applications. Compared to the FFT, the fast Padé transform provided markedly improved resolution of total shape spectra from encoded in vivo time signals from healthy human brain and for in vitro data associated with ovarian cancer. Evidence is presented as to why it is necessary to go beyond MR total shape spectra to calculate metabolite concentrations. It is shown that error spectra, while necessary, are insufficient for accurate assessment of MR data. Two examples from oncology are given to illustrate this point: (1) a marker of breast cancer, phosphocholine, is detected on the component shape spectra, but not on the total shape spectrum, (2) diagnostically important multiplet resonances in prostate cancer spectra can only be detected on the component shape spectra, but not on the total shape spectrum. The FPT provides accurate calculation of metabolite concentrations based on in vitro MR data from three diagnostic problems in clinical oncology: (1) malignant and benign ovarian lesions, (2) breast cancer, fibroadenoma and normal breast tissue and (3) prostate cancer tissue, healthy glandular and stromal prostate tissue. Practical implementation of signal-noise separation is demonstrated for MR time signals encoded in vivo from the human brain on a clinical (1.5 T) scanner. Some 23 stable resonances are thereby identified and quantified. These results provide the basis for the needed next steps: to extensively apply the FPT to in vivo time signals encoded mainly on clinical scanners from e.g. brain tumors, breast, ovary and prostate cancers as well as from benign and normal tissue. The overall goal is that this practical approach through mathematical optimization enables Padé-based MRS to soon be implemented in clinical oncology, including target planning, post-radiotherapeutic follow-up and other aspects of radiation therapy.
机译:快速Padé变换(FPT)已作为稳定的高分辨率处理器进行了基准测试。在本文中,对与卵巢癌,乳腺癌和前列腺癌以及良性或正常组织相关的体外磁共振(MR)光谱数据检查了FPT的性能。我们还研究了FPT如何处理由高场和临床(1.5 T)扫描仪编码的人脑的体内MR光谱(MRS)时间信号。通过快速傅立叶变换(FFT)与常规数据分析进行显着比较。考虑到实际应用,将噪声与真实信号分离。与FFT相比,快速的Padé变换显着提高了来自健康人脑的编码体内时间信号以及与卵巢癌相关的体外数据的总形状光谱的分辨率。提出了关于为什么必须超出MR总形状谱来计算代谢物浓度的证据。结果表明,误差谱虽然必要,但不足以准确评估MR数据。提供了两个来自肿瘤学的例子来说明这一点:(1)在成分形状谱图上检测到乳腺癌标志物磷酸胆碱,但在总形状谱图上未检测到;(2)前列腺癌谱图中诊断上重要的多重共振可以仅在部件形状光谱上检测到,而不在总形状光谱上检测到。 FPT根据临床肿瘤学中三个诊断问题的体外MR数据提供了准确的代谢物浓度计算:(1)恶性和良性卵巢病变,(2)乳腺癌,纤维腺瘤和正常乳腺组织,(3)前列腺癌组织,健康的腺体和间质前列腺组织。在临床(1.5 T)扫描仪上,对人脑在体内编码的MR时间信号进行了信噪分离的实际实现。从而识别并量化了约23个稳定的共振。这些结果为下一步所需的步骤提供了基础:将FPT广泛应用到主要在例如来自美国,美国和加拿大的临床扫描仪上编码的体内时间信号。脑肿瘤,乳腺癌,卵巢癌和前列腺癌以及良性和正常组织。总体目标是,这种通过数学优化的实用方法使基于Padé的MRS能够很快在临床肿瘤学中实施,包括目标计划,放射治疗后的随访以及放射治疗的其他方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号