...
首页> 外文期刊>Journal of Materials Science >A complete GTN model for prediction of ductile failure of pipe
【24h】

A complete GTN model for prediction of ductile failure of pipe

机译:预测管道延性失效的完整GTN模型

获取原文
获取原文并翻译 | 示例

摘要

The micro mechanical model by Gurson–Tvergaard–Needleman is widely used for the prediction of ductile fracture. Some material properties (Gurson parameters) used as material input in this model for simulation are estimated experimentally from specimen level. In this article an attempt has been made to tune the values of some of these Gurson’s parameters by comparing the simulated results with the experimental results in the specimen level (axisymmetric tensile bar and CT specimens). An elastic–plastic finite element code has been developed together with Gurson–Tvergaard–Needleman model for void nucleation and growth. The initial value of f c is determined from Thomason’s limit load model and then tuned on the basis of best prediction of the failure of one-dimensional tensile bar. Then the load versus load line displacement and J versus Updelta{Updelta}a results for CT specimen are generated with the same code and the value of f n is tuned to match the simulated J versus UpdeltaUpdeltaa results with the experimental results. Lastly the same code and the Gurson’s parameters obtained are used to simulate the load versus load point displacement and crack growth for pipe with circumferential crack under four point bending. The simulated results are compared with the experimental results to assess the applicability of the whole method. In the proposed material modelling, post-yielding phenomena and necking of the tensile bar are simulated accordingly and strain softening due to void nucleation and growth has been taken care of properly and drop in stress is implicitly simulated through a model. Incremental plasticity theory with arc length method is used for the nonlinear displacement control problem.
机译:Gurson–Tvergaard–Needleman的微观力学模型被广泛用于预测韧性断裂。在此模型中,用于模拟的一些材料特性(Gurson参数)用作材料输入,是根据标本水平通过实验估算的。在本文中,通过将模拟结果与样本水平(轴对称拉伸棒和CT样本)上的实验结果进行比较,尝试调整某些Gurson参数的值。弹性塑性有限元代码已与Gurson-Tvergaard-Needleman模型一起开发,用于空洞形核和生长。 f c 的初始值是由Thomason的极限载荷模型确定的,然后根据对一维拉伸杆破坏的最佳预测进行调整。然后,使用相同的代码生成CT样本的负载与负载线位移以及J与Updelta {Updelta} a结果,并调整f n 的值,以将模拟的J与UpdeltaUpdeltaa结果与实验结果。最后,使用相同的代码和所获得的Gurson参数来模拟四点弯曲下具有圆周裂纹的管道的载荷与载荷点位移和裂纹扩展。将模拟结果与实验结果进行比较,以评估整个方法的适用性。在所提出的材料建模中,相应地模拟了拉伸棒的屈服后现象和缩颈,并适当考虑了由于空洞形核和生长而引起的应变软化,并通过模型隐式模拟了应力下降。弧长法的增量可塑性理论被用于非线性位移控制问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号