首页> 外文期刊>Journal of Materials Science >Consolidation of ultrafine-grained Cu powder and nanostructured Cu–(2.5–10) vol%Al2O3 composite powders by powder compact forging
【24h】

Consolidation of ultrafine-grained Cu powder and nanostructured Cu–(2.5–10) vol%Al2O3 composite powders by powder compact forging

机译:粉末成形锻造固溶超细晶粒铜粉和纳米结构Cu–(2.5-10)%Al 2 O 3 复合粉

获取原文
获取原文并翻译 | 示例
       

摘要

An as-received ultrafine-grained Cu powder and four nanostructured Cu–(2.5–10) vol%Al2O3 composite powders produced by high-energy mechanical milling of mixtures of the Cu powder and an Al2O3 nanopowder were consolidated using warm powder compaction followed by open die powder compact forging. The circular discs produced in the experiments achieved full densification. Tensile testing of the specimens cut from the forged discs showed that the Cu-forged disc had a fairly high yield strength of 330 MPa, UTS of 340 MPa and a plastic strain to fracture of 15%, but the Cu–Al2O3 composite-forged discs did not show any macroscopic plastic yielding. The fracture strength of the composite-forged discs decreased almost linearly with the increase of the volume fraction of Al2O3 nanoparticles. This study shows that a high level of consolidation of the ultrafine-grained Cu powder and the nanostructured Cu–2.5 vol%Al2O3 composite powder has been achieved by warm powder compacting at 350 °C and powder compact forging at 500 and 700 °C. However, this is not true for the nanostructured Cu–(5, 7.5 and 10) vol%Al2O3 composite powders, possibly due to their higher powder particle hardness at elevated temperatures in the range of 350–800 °C.
机译:高能机械研磨混合物制得的超细晶粒铜粉和四种纳米结构的Cu–(2.5–10)vol%Al 2 O 3 复合粉先用温粉末压实法,然后用开模压实粉末锻造法,将其中的Cu粉末和Al 2 O 3 纳米粉末固结。在实验中生产的圆盘实现了完全致密化。从锻造圆盘切割的试样的拉伸试验表明,铜锻造圆盘具有相当高的屈服强度,为330 MPa,UTS为340 MPa,塑性应变为15%断裂,但是Cu–Al 2 O 3 合成锻造圆盘未显示任何宏观塑性屈服。随着Al 2 O 3 纳米颗粒体积分数的增加,复合材料锻造圆盘的断裂强度几乎呈线性下降。这项研究表明,通过温热粉末,可以实现超细晶粒铜粉和纳米结构的Cu–2.5 vol%Al 2 O 3 复合粉的高固结度在350°C下压实,在500和700°C下粉末压实锻造。但是,对于纳米结构的Cu–(5、7.5和10)vol%Al 2 O 3 复合粉末而言,情况并非如此,这可能是由于它们的粉末硬度较高。高温在350–800°C的范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号