...
首页> 外文期刊>Journal of Materials Science >Microstructural evolution after creep in aluminum alloy 2618
【24h】

Microstructural evolution after creep in aluminum alloy 2618

机译:铝合金2618蠕变后的微观组织演变

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The microstructural evolution of Al–2.24 Cu–1.42 Mg–0.9 Fe–0.9 Ni (AA2618) alloy after 195 °C/18 h aging, as well as after 180 and 240 °C/100 h creep, has been studied by transmission electron microscopy and high resolution electron microscopy (HREM). The Guinier–Preston–Bagaryatsky (GPB) zones/co-clusters, S″, S, and Al9FeNi phases co-exist in the alloys after the 195 °C/18 h aging. After creep, precipitates become coarser and the transformation of GPB zones/co-clusters and S″ to S phase take place. A large number of GPB zones/co-clusters as those in aging state exist after 180 °C/100 h creep which possibly dynamically precipitates during the creep process. After the 240 °C/100 h creep, most of the precipitates are S variants with a few GPB zones and S″ phase. More dislocations appear upon which precipitate colonies form after creep. HREM images show that most of the early precipitates less than about 5 nm cannot exhibit perfect lattice image for the existence of stress. However, certain GPB/co-clusters possessing coherent relationship with the matrix can also be observed. HREM demonstrates that certain S particles viewed along [100]S and [013]S have classic orientation relationship with the matrix, and that those upon the dislocations depart from the standard orientation.
机译:通过透射电子研究了在195°C / 18 h时效后以及在180和240°C / 100 h蠕变后,Al–2.24 Cu–1.42 Mg–0.9 Fe–0.9 Ni(AA2618)合金的组织演变。显微镜和高分辨率电子显微镜(HREM)。 195°C / 18 h时效后,合金中会存在Guinier-Preston-Bagaryatsky(GPB)区/共簇S'',S和Al9 FeNi相。蠕变后,析出物变得更粗糙,GPB区域/共簇和S''转变为S相。在180°C / 100 h蠕变后,存在大量处于老化状态的GPB区域/共同簇,它们可能在蠕变过程中动态沉淀。在240°C / 100 h蠕变后,大多数沉淀物是S变体,具有几个GPB区和S''相。出现更多的位错,蠕变后在其上形成沉淀菌落。 HREM图像显示,大多数小于5 nm的早期析出物无法针对应力的存在显示出完美的晶格图像。但是,也可以观察到某些与矩阵具有连贯关系的GPB /共同集群。 HREM证明沿着[100] S 和[013] S 观察到的某些S粒子与基体具有经典的取向关系,并且位错上的那些S粒子偏离了标准取向。

著录项

  • 来源
    《Journal of Materials Science》 |2012年第6期|p.2541-2547|共7页
  • 作者单位

    National Analysis and Testing Center for Nonferrous Metals and Electronic Materials, General Research Institute for Nonferrous Metals, Beijing, 100088, China;

    Northeast Light Alloy Co., Ltd., Harbin, 150060, China;

    National Analysis and Testing Center for Nonferrous Metals and Electronic Materials, General Research Institute for Nonferrous Metals, Beijing, 100088, China;

    State Key Laboratory of Nonferrous Metals and Processes, General Research Institute for Nonferrous Metals, Beijing, 100088, China;

    State Key Laboratory of Nonferrous Metals and Processes, General Research Institute for Nonferrous Metals, Beijing, 100088, China;

    National Analysis and Testing Center for Nonferrous Metals and Electronic Materials, General Research Institute for Nonferrous Metals, Beijing, 100088, China;

    State Key Laboratory of Nonferrous Metals and Processes, General Research Institute for Nonferrous Metals,;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号