...
首页> 外文期刊>Journal of Materials Science >Bandgap engineering of oxygen-rich TiO2+xn for photocatalyst with enhanced visible-light photocatalytic ability
【24h】

Bandgap engineering of oxygen-rich TiO2+xn for photocatalyst with enhanced visible-light photocatalytic ability

机译:具有增强的可见光光催化能力的富氧TiO2 + xn带隙工程用于光催化剂

获取原文
获取原文并翻译 | 示例

摘要

TiO2, as a photocatalyst, has attracted substantial attention since the discovery of water splitting property on the TiO2 electrodes. However, its efficiency of water splitting is limited by its wide bandgap (~3.0 eV). Here, we predict its bandgap can be efficiently reduced by incorporating excess oxygen atoms on the basis of first-principles calculations. We show that the excess oxygen is more stable to bond to Ti atom and to form ordered structure. The narrowing of bandgap in oxygen-rich TiO2 originates from the ordered excess oxygen because the coupling between them shifts the conduction band bottom down. The bandgap of TiO2+x decreases with the increase of the density of excess oxygen (x). A bandgap of 1.3 eV can be achieved at x = 0.5. The oxygen-rich TiO2 shows intrinsic semiconducting characteristic without localized states within the bandgap, indicating lower trapping centers. The enhancement of visible-light absorption due to the narrowed bandgap and the intrinsic semiconductor characteristic result in the improvement of the photocatalytic performance in oxygen-rich TiO2+x .
机译:自从发现TiO2电极上的水分解性能以来,作为光催化剂的TiO2就引起了广泛的关注。但是,其水分解效率受到其宽带隙(〜3.0 eV)的限制。在这里,我们预测在第一性原理的基础上,通过结合过量的氧原子可以有效地降低其带隙。我们表明,过量的氧更稳定地结合到Ti原子上并形成有序结构。富氧TiO2中的带隙变窄源自有序的过量氧,因为它们之间的耦合使导带自下而下移动。 TiO2 + x的带隙随着过量氧(x)密度的增加而减小。在x = 0.5时可实现1.3 eV的带隙。富氧的TiO2表现出固有的半导体特性,在带隙内没有局部状态,表明俘获中心较低。由于带隙变窄和固有的半导体特性而导致的可见光吸收的增强导致富氧TiO2 + x中光催化性能的提高。

著录项

  • 来源
    《Journal of Materials Science 》 |2015年第12期| 4324-4329| 共6页
  • 作者

    Hui Pan;

  • 作者单位

    Institute of Applied Physics and Materials Engineering Faculty of Science and Technology University of Macau">(1);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号