...
首页> 外文期刊>Journal of Materials Science >Molecular dynamics of ionic self-diffusion at an MgO grain boundary
【24h】

Molecular dynamics of ionic self-diffusion at an MgO grain boundary

机译:MgO晶界处离子自扩散的分子动力学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The characterization of self-diffusion in MgO grain boundaries is a materials science problem of general interest, being relevant to the stability and reactivity of MgO layers in artificial nanostructures as well as to the understanding of mass transport and morphological evolution in polycrystalline metal oxides which are employed in many technological applications. In addition, atomic transport in MgO is a key factor to describe the rheology of the Earth’s lower mantle. In this work, we tackle the problem using a classical molecular dynamics model and finite-temperature simulations. To this purpose, we first design a stable grain boundary structure, which is meant to be representative of general internal interfaces in nanocrystalline MgO. The Mg and O self-diffusion coefficients along this grain boundary are then determined as a function of temperature by calculating the mean-square ionic displacement in the boundary region. Two different diffusion regimes at low and high temperature are identified, allowing to obtain the relevant activation enthalpies for migration from the temperature dependance of the diffusion coefficients. Our results prove that Mg diffusion along MgO grain boundaries is sufficiently fast to explain the recently reported development of MgO hollow structures during repeated hydrogen sorption cycles in Mg/MgO nanoparticles.
机译:MgO晶界中自扩散的表征是人们普遍关注的材料科学问题,与人工纳米结构中MgO层的稳定性和反应性以及对多晶金属氧化物中质量输运和形貌演化的理解有关。在许多技术应用中使用。此外,MgO中的原子迁移是描述地球下地幔流变学的关键因素。在这项工作中,我们使用经典的分子动力学模型和有限温度模拟来解决该问题。为此,我们首先设计一个稳定的晶界结构,该结构可以代表纳米晶体MgO中的一般内部界面。然后,通过计算边界区域的均方离子位移,确定沿该晶界的Mg和O自扩散系数与温度的关系。确定了在低温和高温下的两种不同的扩散方式,从而可以从扩散系数的温度依赖性中获得用于迁移的相关活化焓。我们的结果证明,沿着MgO晶界的Mg扩散足够快,可以解释最近报道的在Mg / MgO纳米颗粒中重复的氢吸附循环过程中MgO空心结构的发展。

著录项

  • 来源
    《Journal of Materials Science》 |2015年第6期|2502-2509|共8页
  • 作者单位

    Department of Physics and Astronomy and CNISM University of Bologna">(1);

    Department of Physics and Astronomy and CNISM University of Bologna">(1);

    ENEA C. R. Casaccia">(2);

    ENEA C. R. Casaccia">(2);

    ENEA C. R. Casaccia">(2);

    Institut d’Eléctronique Microélectronique et Nanotechnologie (UMR CNRS 8520) Université de Lille I">(3);

    Institut d’Eléctronique Microélectronique et Nanotechnologie (UMR CNRS 8520) Université de Lille I">(3);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号