首页> 外文期刊>Journal of Materials Science >Growth of aluminum-substituted nickel hydroxide nanoflakes on nickel foam with ultrahigh specific capacitance at high current density
【24h】

Growth of aluminum-substituted nickel hydroxide nanoflakes on nickel foam with ultrahigh specific capacitance at high current density

机译:高电流密度下具有超高比电容的泡沫镍上铝取代氢氧化镍纳米薄片的生长

获取原文
获取原文并翻译 | 示例
           

摘要

Aluminum-substituted α-Ni(OH)2 nanoflakes grown on nickel foam as electrode for application in supercapacitor were synthesized in the presence of urea through a hydrothermal route. The as-synthesized nanoflakes with ultra-thin thickness of about 12 nm presented isolated state on Nickel foam. The sample substituted with 9.8 % Al showed the highest specific capacitance of 3637 F g−1 at scan rate of 5 mV s−1 in 3 M KOH aqueous solution. This sample also kept high specific capacitance of 1142 F g−1 at high charge and discharge current density of 32 A g−1. The excellent electrochemical performance can be ascribed to the thin thickness and isolated state of these nanoflakes. The two characteristics of nanoflakes guaranteed their full contact with electrolyte during the electrochemical reactions, therefore leading to the instant and full utilization of electroactive material. During stability test, the capacitance of material still remained 81 % after 2000 charge–discharge cycles. These results demonstrated that the nanoflakes could be applied as high performance electrode material in supercapacitor.
机译:在尿素存在的情况下,通过水热法合成了在泡沫镍上生长的铝取代α-Ni(OH)2纳米片作为超级电容器用电极。合成后的纳米薄片具有约12 nm的超薄厚度,在镍泡沫上呈现出孤立状态。在3 M KOH水溶液中,以5 mV s-1的扫描速率,被9.8%Al取代的样品显示出最高的比电容3637 F g-1。在32A g-1的高充放电电流密度下,该样品还保持了1142 F g-1的高比电容。优异的电化学性能可以归因于这些纳米薄片的薄厚度和隔离状态。纳米薄片的两个特性保证了它们在电化学反应过程中与电解质完全接触,因此导致了电活性材料的即时和充分利用。在稳定性测试过程中,经过2000次充放电循环后,材料的电容仍保持81%。这些结果表明,纳米薄片可以用作超级电容器中的高性能电极材料。

著录项

  • 来源
    《Journal of Materials Science》 |2015年第6期|2422-2428|共7页
  • 作者单位

    Shandong Provincial Engineering Research Center for Comprehensive Utilization of Light Hydrocarbons College of Chemistry and Chemical Engineering Yantai University">(1);

    Shandong Provincial Engineering Research Center for Comprehensive Utilization of Light Hydrocarbons College of Chemistry and Chemical Engineering Yantai University">(1);

    Shandong Provincial Engineering Research Center for Comprehensive Utilization of Light Hydrocarbons College of Chemistry and Chemical Engineering Yantai University">(1);

    Shandong Provincial Engineering Research Center for Comprehensive Utilization of Light Hydrocarbons College of Chemistry and Chemical Engineering Yantai University">(1);

    Shandong Provincial Engineering Research Center for Comprehensive Utilization of Light Hydrocarbons College of Chemistry and Chemical Engineering Yantai University">(1);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号