...
首页> 外文期刊>Journal of materials science >Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces
【24h】

Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces

机译:粘附蛋白对生物活性聚合物处理过的表面的细胞和细菌反应的贡献:以聚(苯乙烯磺酸钠)接枝的钛表面为例

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance approximate to 70 % compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast-like cells while reducing bacterial adhesion to create a bioactive surface with potential for orthopaedic applications.
机译:对具有生物活性聚合物的功能化模型或修复表面进行的研究已经提出了调节和/或控制生物体外和体内对合成生物材料的反应的可能性。表面上的磺化基团表现出的生物活性的基本机制涉及选择性吸附和吸附蛋白的构象变化。实际上,通过接枝聚(苯乙烯磺酸钠)[聚(NaSS)]功能化的表面通过诱导与纤连蛋白(Fn)的特异性相互作用来调节细胞和细菌的反应。植入后,生物材料表面会暴露于许多蛋白质的环境中,这些蛋白质竞争该表面,这决定了随后的生物反应。一旦理解,可以通过指示活性结合位点的暴露来控制。在这项体外研究中,我们报告了吸附在聚(NaSS)接枝的Ti6Al4V上的蛋白质[白蛋白(BSA),Fn和I型胶原(Col I)]的二元混合物对MC3T3-E1成骨细胞粘附和分化的影响像细胞和金黄色葡萄球菌(金黄色葡萄球菌)的粘附和增殖。结果表明,与未移植的Ti6Al4V(对照)相比,聚(NaSS)刺激细胞扩散,附着强度,分化和矿化,无论界面处提供的蛋白质的性质如何。在比赛中,Fn和Col I能够胜过BSA。 Fn在细胞与表面的早期相互作用中起着重要作用,而Col I负责增加与分化相关的碱性磷酸酶,钙和磷酸盐的产生。与未接枝的Ti6Al4V相比,聚(NaSS)接枝表面降低了金黄色葡萄球菌的粘附力,并且在这些化学变化的表面上Fn的存在增加了大约70%的细菌抵抗力。总体而言,我们的研究表明,聚(NaSS)接枝的Ti6Al4V选择性吸附蛋白质(尤其是Fn),促进成骨细胞样细胞的粘附和分化,同时减少细菌粘附,从而形成具有骨科应用潜力的生物活性表面。

著录项

  • 来源
    《Journal of materials science》 |2015年第11期|261.1-261.14|共14页
  • 作者单位

    Univ Paris 13, Lab Chim Struct & Proprietes Biomat & Agents Ther, Sorbonne Paris Cite, UMR CNRS 7244,Inst Galilee, F-93430 Villetaneuse, France.;

    Univ Paris 13, Lab Chim Struct & Proprietes Biomat & Agents Ther, Sorbonne Paris Cite, UMR CNRS 7244,Inst Galilee, F-93430 Villetaneuse, France.;

    CSIRO, Biomed Mat Program, N Ryde, NSW 2113, Australia.;

    Univ Paris 13, Lab Chim Struct & Proprietes Biomat & Agents Ther, Sorbonne Paris Cite, UMR CNRS 7244,Inst Galilee, F-93430 Villetaneuse, France.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号