首页> 外文期刊>Journal of materials science >Mn_3O_4 nanoparticles embedded in 3D reduced graphene oxide network as anode for high-performance lithium ion batteries
【24h】

Mn_3O_4 nanoparticles embedded in 3D reduced graphene oxide network as anode for high-performance lithium ion batteries

机译:嵌入3D还原氧化石墨烯网络中的Mn_3O_4纳米颗粒作为高性能锂离子电池的阳极

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Mn_3O_4 nanoparticles were in-situ synthesized in the 3D framework of reduced graphene oxide (RGO) by a facile one-step hydrothermal method. In the reduced graphene-Mn_3O_4 (RGM) composite, the RGO network not only serves as a mechanical support to construct a self-supported and binder-free electrode, but also offers 3D continuous conductive network for effective electron transfer. The Mn_3O_4 nanoparticles anchored uniformly across the RGO framework, which provided high capacity and prevented the restacking of the RGO thin sheets. Based on the unique composite structures, strong synergistic effect was achieved between Mn_3O_4 and RGO, resulting in superior specific capacity, enhanced rate capability, stable cycling performance and nearly 100% Coulombic efficiency in the RGM2 composites. With an optimal Mn_3O_4 composition of 44% by weight (similarly hereinafter), the composite exhibits high specific capacities of 696-795 mAh g~1 based on the overall weight of the electrode in 60 cycles at 200 mA g~(-1), with a large coulombic efficiency of around 98%. Even at a high current density of 10,000 mA g~(-1), the composite can still deliver a capacity of 383 mAh g~(-1), demonstrating its excellent rate performance. The outstanding performances of the composites are attributed to the synergistic effect of both components and the hierarchical structure of the composite.
机译:Mn_3O_4纳米粒子是在3D还原氧化石墨烯(RGO)框架中通过一种简便的一步水热方法原位合成的。在还原的石墨烯-Mn_3O_4(RGM)复合材料中,RGO网络不仅用作构造自支撑且无粘合剂的电极的机械支撑,而且还提供3D连续导电网络以实现有效的电子转移。 Mn_3O_4纳米粒子均匀地锚定在RGO框架上,这提供了高容量并防止了RGO薄片的重新堆叠。基于独特的复合材料结构,Mn_3O_4与RGO之间实现了强大的协同作用,从而在RGM2复合材料中具有出众的比容量,增强的倍率性能,稳定的循环性能和近100%的库仑效率。 Mn_3O_4的最佳组成为44重量%(下同),基于200 mA g〜(-1)的60个循环中电极的总重量,该复合材料显示出696-795 mAh g〜1的高比容量,库仑效率高达98%左右。即使在10,000 mA g〜(-1)的高电流密度下,该复合材料仍可提供383 mAh g〜(-1)的容量,这证明了其出色的倍率性能。复合材料的出色性能归因于两种组分的协同作用以及复合材料的层次结构。

著录项

  • 来源
    《Journal of materials science》 |2017年第20期|14919-14927|共9页
  • 作者单位

    Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China;

    Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China;

    Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China;

    Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China;

    Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号