...
首页> 外文期刊>Journal of materials science >MEMS based hydrogen sensor with the highly porous Au-CNT film as a sensing material
【24h】

MEMS based hydrogen sensor with the highly porous Au-CNT film as a sensing material

机译:基于MEMS的氢传感器,具有高度多孔的Au-CNT膜作为传感材料

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Well dispersed gold nanoparticles were deposited on carbon nanotubes (CNTs) by direct current (DC) sputtering followed by dealloying method, forming highly porous thin films using nitric acid (HNO_3). The structure and morphology of the thin film were characterized using Fourier transmission-infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), Raman spectroscopy, atomic force microscopy (AFM), and field emission scanning electron microscopy (FE-SEM). FE-SEM and AFM confirmed that gold nanoparticles were homogenously dispersed on the CNT matrix which is like a highly porous film. The XRD patterns revealed the existence of metallic gold particles on the disordered graphitic phases. FTIR and Raman spectroscopy confirmed the interaction between the gold nanoparticles and CNT matrix. A microelectromechanical systems based micro hydrogen gas sensor was developed from the highly porous thin film of Au-CNT. The micro heater and sensing electrode were fabricated to have a co-planar structure with a Pt layer. The designed micro platform showed low power consumption of 72 mW at a 2.5 V heater voltage and an operating temperature of 300 °C. The dimensions of the micro hydrogen gas sensor platform and sensing area were approximately 1.8 mm × 1.8 mm and 0.6 mm × 0.6 mm, respectively. The maximum gas sensitivity measured at 3.0 V was found to be 2.99%.
机译:分散良好的金纳米颗粒通过直流(DC)溅射和随后的脱合金方法沉积在碳纳米管(CNT)上,使用硝酸(HNO_3)形成高度多孔的薄膜。使用傅立叶透射红外光谱(FT-IR),X射线衍射(XRD),拉曼光谱,原子力显微镜(AFM)和场发射扫描电子显微镜(FE-SEM)对薄膜的结构和形态进行表征)。 FE-SEM和AFM证实,金纳米颗粒均匀地分散在CNT基质上,就像多孔膜一样。 XRD图谱表明在无序石墨相上存在金属金颗粒。 FTIR和拉曼光谱证实了金纳米颗粒和CNT基质之间的相互作用。从Au-CNT的高孔隙率薄膜开发了基于微机电系统的微型氢气传感器。微型加热器和感测电极被制造成具有与Pt层共面的结构。设计的微型平台在2.5V的加热器电压和300°C的工作温度下显示出72mW的低功耗。微型氢气传感器平台和感应区域的尺寸分别约为1.8 mm×1.8 mm和0.6 mm×0.6 mm。在3.0V下测得的最大气体敏感性为2.99%。

著录项

  • 来源
    《Journal of materials science》 |2017年第18期|13540-13547|共8页
  • 作者单位

    Department of Material Science and Engineering, University of Seoul, Seoul, South Korea;

    Department of Material Science and Engineering, University of Seoul, Seoul, South Korea,Department of Energy and Materials Engineering, Dongguk University, Seoul, South Korea;

    Department of Material Science and Engineering, University of Seoul, Seoul, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号