首页> 外文期刊>Journal of materials science >Thermoelectric properties of CoSb_3 and CoSb_3/SiC composites prepared by mechanical alloying and microwave sintering
【24h】

Thermoelectric properties of CoSb_3 and CoSb_3/SiC composites prepared by mechanical alloying and microwave sintering

机译:机械合金化和微波烧结制备CoSb_3和CoSb_3 / SiC复合材料的热电性能

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Pure CoSb3 and 0.1 vol% nano-SiC-composited CoSb3 were prepared by mechanical alloying and subsequent fast microwave sintering. The electrical transport properties display totally different behaviors in microwave-annealed CoSb3 and CoSb3/SiC composites, implying their susceptibility to the preparation conditions or uncertainties. The unique microstructure including the inter-granular and intra-granular precipitates combined with high porosity of the microwave-synthesized CoSb3 and CoSb3/SiC composites lead to low thermal conductivity, which compensates the loss in electrical conductivity and results in comparable figure of merit ZT value with those reported for undoped CoSb3 from conventional method requiring high energy consumption and lengthy synthesis time. The results show that low compactness is not detrimental for the thermoelectric performance and microwave is a highly cost-effective technique for large-scale production of thermoelectric materials possessing nanostructure and low thermal conductivity. In fact, such synthesis route combining mechanical alloying and microwave annealing might be also suitable for other high performance thermoelectric materials. Actually, continuous fabrication can be readily realized in an upgraded tube microwave heating system for higher energy efficiency ratio.
机译:通过机械合金化和随后的快速微波烧结制备了<标题>摘要 纯CoSb 3 和0.1vol%的纳米SiC复合CoSb 3 。微波退火的CoSb 3 和CoSb 3 / SiC复合材料的电输运性能完全不同,这说明它们对制备条件或不确定性具有敏感性。微波合成的CoSb 3 和CoSb 3 / SiC复合材料的独特的微观结构,包括晶间和晶内析出物以及高孔隙率,导致低导热性,它补偿了电导率的损失,并获得了与传统方法中要求高能耗和较长合成时间的未掺杂CoSb 3 所报告的ZT值相当的品质因数ZT值。结果表明,低致密性对热电性能无害,微波是大规模生产具有纳米结构和低导热率的热电材料的高成本效益技术。实际上,结合机械合金化和微波退火的这种合成路线也可能适用于其他高性能热电材料。实际上,可以在升级的管式微波加热系统中轻松实现连续制造,以实现更高的能源利用率。

著录项

  • 来源
    《Journal of materials science》 |2017年第14期|10509-10515|共7页
  • 作者单位

    Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University;

    Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University;

    Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University;

    Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University;

    Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号